Regulation of heme oxygenase-1 protein expression by miR-377 in Combination with miR-217

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

Heme oxygenase-1 (HO-1) enzyme plays a critical role in metabolizing the excess heme generated during hemolysis. Our previous studies suggested that during intravascular hemolysis the expression of HO-1 protein is not sufficient to reduce the oxidative burden of free heme in the vasculature. This led us to hypothesize that a post-translational mechanism of control exists for HO-1 expression. Micro-RNAs (miRNA) affect gene expression by post-transcriptional gene regulation of transcripts. We performed in silico analysis for the human HMOX1-3′ untranslated region (3′ UTR) and identified candidate miRNA binding sites. Two candidate miRNAs, miR-377 and miR-217, were cloned and co-transfected with a luciferase vector containing the human HMOX1-3′UTR region. The combination of miR-377 and miR-217 produced a 58% reduction in HMOX1-3′UTR luciferase reporter expression compared with controls. The same constructs were then used to assess how overexpression of miR-217 and miR-377 affected HO-1 levels after induction with hemin. Cells transfected with the combination of miR-377 and miR-217 exhibited no change in HMOX1 mRNA levels, but a significant reduction in HMOX1 (HO-1) protein expression and enzyme activity compared with non-transfected hemin-stimulated controls. Transfection with either miR-377 or miR-217 alone did not produce a significant decrease in HO-1 protein expression or enzyme activity. Knockdown of miR-217 and miR-377 in combination leads to up-regulation of HO-1 protein. Exposure to hemin induced a significant reduction in miR-217 expression and a trend toward decreased miR-377 expression in two different cells lines. In summary, these data suggests that the combination of miR-377 and miR-217 help regulate HO-1 protein expression in the presence of hemin.

Original languageEnglish (US)
Pages (from-to)3194-3202
Number of pages9
JournalJournal of Biological Chemistry
Volume286
Issue number5
DOIs
StatePublished - Feb 4 2011

Fingerprint

Heme Oxygenase-1
Hemin
MicroRNAs
Proteins
Enzyme activity
Hemolysis
Luciferases
Heme
Gene expression
Enzymes
3' Untranslated Regions
Computer Simulation
Transfection
Up-Regulation
Binding Sites
Cells
Gene Expression
Cell Line
Messenger RNA
Genes

Cite this

@article{1feb2ffaf023467583990201d8d5ebb8,
title = "Regulation of heme oxygenase-1 protein expression by miR-377 in Combination with miR-217",
abstract = "Heme oxygenase-1 (HO-1) enzyme plays a critical role in metabolizing the excess heme generated during hemolysis. Our previous studies suggested that during intravascular hemolysis the expression of HO-1 protein is not sufficient to reduce the oxidative burden of free heme in the vasculature. This led us to hypothesize that a post-translational mechanism of control exists for HO-1 expression. Micro-RNAs (miRNA) affect gene expression by post-transcriptional gene regulation of transcripts. We performed in silico analysis for the human HMOX1-3′ untranslated region (3′ UTR) and identified candidate miRNA binding sites. Two candidate miRNAs, miR-377 and miR-217, were cloned and co-transfected with a luciferase vector containing the human HMOX1-3′UTR region. The combination of miR-377 and miR-217 produced a 58{\%} reduction in HMOX1-3′UTR luciferase reporter expression compared with controls. The same constructs were then used to assess how overexpression of miR-217 and miR-377 affected HO-1 levels after induction with hemin. Cells transfected with the combination of miR-377 and miR-217 exhibited no change in HMOX1 mRNA levels, but a significant reduction in HMOX1 (HO-1) protein expression and enzyme activity compared with non-transfected hemin-stimulated controls. Transfection with either miR-377 or miR-217 alone did not produce a significant decrease in HO-1 protein expression or enzyme activity. Knockdown of miR-217 and miR-377 in combination leads to up-regulation of HO-1 protein. Exposure to hemin induced a significant reduction in miR-217 expression and a trend toward decreased miR-377 expression in two different cells lines. In summary, these data suggests that the combination of miR-377 and miR-217 help regulate HO-1 protein expression in the presence of hemin.",
author = "Beckman, {Joan D} and Chunsheng Chen and Julia Nguyen and Venugopal Thayanithy and Subree Subramanian and Steer, {Clifford J} and Vercellotti, {Gregory M}",
year = "2011",
month = "2",
day = "4",
doi = "10.1074/jbc.M110.148726",
language = "English (US)",
volume = "286",
pages = "3194--3202",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "5",

}

TY - JOUR

T1 - Regulation of heme oxygenase-1 protein expression by miR-377 in Combination with miR-217

AU - Beckman, Joan D

AU - Chen, Chunsheng

AU - Nguyen, Julia

AU - Thayanithy, Venugopal

AU - Subramanian, Subree

AU - Steer, Clifford J

AU - Vercellotti, Gregory M

PY - 2011/2/4

Y1 - 2011/2/4

N2 - Heme oxygenase-1 (HO-1) enzyme plays a critical role in metabolizing the excess heme generated during hemolysis. Our previous studies suggested that during intravascular hemolysis the expression of HO-1 protein is not sufficient to reduce the oxidative burden of free heme in the vasculature. This led us to hypothesize that a post-translational mechanism of control exists for HO-1 expression. Micro-RNAs (miRNA) affect gene expression by post-transcriptional gene regulation of transcripts. We performed in silico analysis for the human HMOX1-3′ untranslated region (3′ UTR) and identified candidate miRNA binding sites. Two candidate miRNAs, miR-377 and miR-217, were cloned and co-transfected with a luciferase vector containing the human HMOX1-3′UTR region. The combination of miR-377 and miR-217 produced a 58% reduction in HMOX1-3′UTR luciferase reporter expression compared with controls. The same constructs were then used to assess how overexpression of miR-217 and miR-377 affected HO-1 levels after induction with hemin. Cells transfected with the combination of miR-377 and miR-217 exhibited no change in HMOX1 mRNA levels, but a significant reduction in HMOX1 (HO-1) protein expression and enzyme activity compared with non-transfected hemin-stimulated controls. Transfection with either miR-377 or miR-217 alone did not produce a significant decrease in HO-1 protein expression or enzyme activity. Knockdown of miR-217 and miR-377 in combination leads to up-regulation of HO-1 protein. Exposure to hemin induced a significant reduction in miR-217 expression and a trend toward decreased miR-377 expression in two different cells lines. In summary, these data suggests that the combination of miR-377 and miR-217 help regulate HO-1 protein expression in the presence of hemin.

AB - Heme oxygenase-1 (HO-1) enzyme plays a critical role in metabolizing the excess heme generated during hemolysis. Our previous studies suggested that during intravascular hemolysis the expression of HO-1 protein is not sufficient to reduce the oxidative burden of free heme in the vasculature. This led us to hypothesize that a post-translational mechanism of control exists for HO-1 expression. Micro-RNAs (miRNA) affect gene expression by post-transcriptional gene regulation of transcripts. We performed in silico analysis for the human HMOX1-3′ untranslated region (3′ UTR) and identified candidate miRNA binding sites. Two candidate miRNAs, miR-377 and miR-217, were cloned and co-transfected with a luciferase vector containing the human HMOX1-3′UTR region. The combination of miR-377 and miR-217 produced a 58% reduction in HMOX1-3′UTR luciferase reporter expression compared with controls. The same constructs were then used to assess how overexpression of miR-217 and miR-377 affected HO-1 levels after induction with hemin. Cells transfected with the combination of miR-377 and miR-217 exhibited no change in HMOX1 mRNA levels, but a significant reduction in HMOX1 (HO-1) protein expression and enzyme activity compared with non-transfected hemin-stimulated controls. Transfection with either miR-377 or miR-217 alone did not produce a significant decrease in HO-1 protein expression or enzyme activity. Knockdown of miR-217 and miR-377 in combination leads to up-regulation of HO-1 protein. Exposure to hemin induced a significant reduction in miR-217 expression and a trend toward decreased miR-377 expression in two different cells lines. In summary, these data suggests that the combination of miR-377 and miR-217 help regulate HO-1 protein expression in the presence of hemin.

UR - http://www.scopus.com/inward/record.url?scp=79952777627&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952777627&partnerID=8YFLogxK

U2 - 10.1074/jbc.M110.148726

DO - 10.1074/jbc.M110.148726

M3 - Article

C2 - 21106538

AN - SCOPUS:79952777627

VL - 286

SP - 3194

EP - 3202

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 5

ER -