Regulation of eosinophil recruitment and allergic airway inflammation by tropomyosin receptor kinase A

Mythili Dileepan, Xiao Na Ge, Idil Bastan, Yana G. Greenberg, Yuying Liang, P. Sriramarao, Savita P. Rao

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Eosinophilia is a hallmark of allergic airway inflammation (AAI). Identifying key molecules and specific signaling pathways that regulate eosinophilic inflammation is critical for development of novel therapeutics. Tropomycin receptor kinase A (TrkA) is the high-affinity receptor for nerve growth factor. AAI is associated with increased expression of TrkA by eosinophils; however, the functional role of TrkA in regulating eosinophil recruitment and contributing to AAI is poorly understood. This study identifies, to our knowledge, a novel mechanism of eotaxin-mediated activation of TrkA and its role in regulating eosinophil recruitment by using a chemical-genetic approach to specifically inhibit TrkA kinase activity with 1-NM-PP1 in TrkAF592A-knock-in (TrkA-KI) eosinophils. Blockade of TrkA by 1-NM-PP1 enhanced eosinophil spreading on VCAM-1 but inhibited eotaxin-1 (CCL11)- mediated eosinophil migration, calcium flux, cell polarization, and ERK1/2 activation, suggesting that TrkA is an important player in the signaling pathway activated by eotaxin-1 during eosinophil migration. Further, blockade of matrix metalloprotease with BB-94 inhibited eotaxin-1-induced TrkA activation and eosinophil migration, additively with 1-NM-PP1, indicating a role for matrix metalloproteases in TrkA activation. TrkA inhibition in Alternaria alternata-challenged TrkA-KI mice markedly inhibited eosinophilia and attenuated various features of AAI. These findings are indicative of a distinctive eotaxin-mediated TrkAdependent signaling pathway, which, in addition to other TrkA-activating mediators, contributes to eosinophil recruitment during AAI and suggests that targeting the TrkA signaling pathway to inhibit eosinophil recruitment may serve as a therapeutic strategy for management of eosinophilic inflammation in allergic airway disease, including asthma.

Original languageEnglish (US)
Pages (from-to)682-693
Number of pages12
JournalJournal of Immunology
Issue number3
StatePublished - Feb 1 2020

Bibliographical note

Funding Information:
This work was supported by National Institutes of Health/National Institute of Allergy and Infectious Diseases Grant AI137487 (to S.P.R.).

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural


Dive into the research topics of 'Regulation of eosinophil recruitment and allergic airway inflammation by tropomyosin receptor kinase A'. Together they form a unique fingerprint.

Cite this