Region-specific cis- and trans-acting factors contribute to genetic variability in meiotic recombination in maize

Marja C P Timmermans, O. Prem Das, James M. Bradeen, Joachim Messing

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Understanding the genetic basis for variability in recombination rates is important for general genetic studies and plant-breeding efforts. Earlier studies had suggested increased recombination frequencies in particular F2 populations derived from the maize inbred A188. A detailed phenotypic and molecular analysis was undertaken to extend these observations and dissect the responsible factors. A heritable increase in recombination in the sh1- bz1 interval was observed in these populations. A factor causing an approximate twofold increase mapped to the A188 Sh1-Bz1 region, behaved as a dominant, cis-acting factor, affected recombination equally in male and female sporogenesis and did not reduce the well-studied complete interference in the adjacent bz1-wx interval. This factor also did not increase recombination frequencies in the c1-sh1 and bz1-wx intervals, demonstrating independent control of recombination in adjacent intervals. Additional phenotypic analysis of recombination in the c1-sh1 and bz1-wx intervals and RFLP analysis of recombination along chromosome 7 and 5 suggested that heritable factors controlling recombination in these intervals act largely independently and in trans. Our results show that recombination in these populations, and possibly maize in general, is controlled by both cis- and trans-acting factors that affect specific chromosomal regions.

Original languageEnglish (US)
Pages (from-to)1101-1113
Number of pages13
JournalGenetics
Volume146
Issue number3
StatePublished - Jul 23 1997

Fingerprint Dive into the research topics of 'Region-specific cis- and trans-acting factors contribute to genetic variability in meiotic recombination in maize'. Together they form a unique fingerprint.

Cite this