TY - JOUR
T1 - Reflex constriction of human limb resistance vessels to head-down neck flexion
AU - Essandoh, L. K.
AU - Duprez, D. A.
AU - Shepherd, J. T.
PY - 1988/1/1
Y1 - 1988/1/1
N2 - The effect of head-down neck flexion on forearm and calf blood flow was determined in 10 healthy male subjects. The subject lay prone, with the neck slightly extended and the chin resting on a soft-padded support at the edge of the table. The chin support was then removed, and the subject maximally flexed and lowered the neck. This was followed by return to the initial position. Neck flexion caused a rapid decrease in blood flow in both forearm and calf; at 30 s this averaged 39 and 35%, respectively. The flow in both forearm and calf gradually recovered as the neck flexion was sustained and approached the control values at the end of 10 min. The blood flow at the ankle was unchanged, indicating that the decrease occurred in the skeletal muscles. The arterial blood pressure and heart rate were unchanged; thus the decrease in flow was due to vasoconstriction. The fact that the decrease was evident as soon as the head was lowered indicated that it was nervously mediated. Neither contraction of the flexor muscles of the neck nor venous congestion of the head, in the absence of the head-down position, altered the blood flow. Although the mechanism of the decrease in flow has not been determined, the studies demonstrate that in response to certain stimuli, the resistance vessels in the skeletal muscles of the forearm and calf undergo a similar nervously mediated vasoconstriction.
AB - The effect of head-down neck flexion on forearm and calf blood flow was determined in 10 healthy male subjects. The subject lay prone, with the neck slightly extended and the chin resting on a soft-padded support at the edge of the table. The chin support was then removed, and the subject maximally flexed and lowered the neck. This was followed by return to the initial position. Neck flexion caused a rapid decrease in blood flow in both forearm and calf; at 30 s this averaged 39 and 35%, respectively. The flow in both forearm and calf gradually recovered as the neck flexion was sustained and approached the control values at the end of 10 min. The blood flow at the ankle was unchanged, indicating that the decrease occurred in the skeletal muscles. The arterial blood pressure and heart rate were unchanged; thus the decrease in flow was due to vasoconstriction. The fact that the decrease was evident as soon as the head was lowered indicated that it was nervously mediated. Neither contraction of the flexor muscles of the neck nor venous congestion of the head, in the absence of the head-down position, altered the blood flow. Although the mechanism of the decrease in flow has not been determined, the studies demonstrate that in response to certain stimuli, the resistance vessels in the skeletal muscles of the forearm and calf undergo a similar nervously mediated vasoconstriction.
UR - http://www.scopus.com/inward/record.url?scp=0023873424&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023873424&partnerID=8YFLogxK
M3 - Article
C2 - 3372433
AN - SCOPUS:0023873424
SN - 0161-7567
VL - 64
SP - 767
EP - 770
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 2
ER -