Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

Nalladurai Kaliyan, R. Vance Morey, Douglas G. Tiffany

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm3 y-1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

Original languageEnglish (US)
Pages (from-to)1103-1113
Number of pages11
JournalBiomass and Bioenergy
Volume35
Issue number3
DOIs
StatePublished - Mar 1 2011

Keywords

  • Combined heat and power
  • Corn ethanol
  • Corn stover
  • Greenhouse gas emissions
  • Life cycle assessment
  • Zea mays

Fingerprint Dive into the research topics of 'Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants'. Together they form a unique fingerprint.

Cite this