Abstract
At the beginning of the breakout of a new disease, the healthcare community almost always has little experience in treating patients of this kind. Similarly, due to insufficient patient records at the early stage of a pandemic, it is difficult to train an in-hospital mortality prediction model specific to the new disease. We call this the 'cold start' problem of mortality prediction models. In this paper, we aim to study the cold start problem of 3-days ahead COVID-19 mortality prediction models by the following two steps: (i) Train XGBoost [1] and logistic regression 3-days ahead mortality prediction models on MIMIC3, a publicly available ICU patient dataset [2];(ii) Apply those MIMIC3 models to COVID-19 patients and then use the prediction scores as a new feature to train COVID-19 3-days ahead mortality prediction models. Retrospective experiments are conducted on a real-world COVID-19 patient dataset(n = 1,287) collected in US from June 2020 to February 2021 with a mixed cohort of both ICU and Non-ICU patients. Since the dataset is imbalanced(death rate = 7.8%), we primarily focus on the relative improvement of AUPR. We trained models with and without MIMIC3 scores on the first 200, 400,..., 1000 patients respectively and then tested on the next 200 incoming patients. The results show a diminishing positive transfer effect of AUPR from 5.36% for the first 200 patients(death rate = 5.5%) to 3.58% for all 1,287 patients. Meanwhile the AUROC scores largely remain unchanged, regardless of the number of patients in the training set. What's more, the p-value of t-test suggests that the cold start problem disappears for a dataset larger than 600 COVID-19 patients. To conclude, we demonstrate the possibility of mitigating the cold start problem via the proposed method.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2022 IEEE 10th International Conference on Healthcare Informatics, ICHI 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 201-210 |
Number of pages | 10 |
ISBN (Electronic) | 9781665468459 |
DOIs | |
State | Published - 2022 |
Event | 10th IEEE International Conference on Healthcare Informatics, ICHI 2022 - Rochester, United States Duration: Jun 11 2022 → Jun 14 2022 |
Publication series
Name | Proceedings - 2022 IEEE 10th International Conference on Healthcare Informatics, ICHI 2022 |
---|
Conference
Conference | 10th IEEE International Conference on Healthcare Informatics, ICHI 2022 |
---|---|
Country/Territory | United States |
City | Rochester |
Period | 6/11/22 → 6/14/22 |
Bibliographical note
Funding Information:The research plan and the use of patient data is approved by the IRB at Abbott Northwestern Hospital, Minneapolis, MN. This study is supported by the Abbott Northwestern Research Foundation (ANWF21-0102). We also sincerely thank the Minnesota Supercomputing Institute (MSI) at the University of Minnesota3 for providing computational resources.
Funding Information:
The research plan and the use of patient data is approved by the IRB at Abbott Northwestern Hospital, Minneapolis, MN. This study is supported by the Abbott Northwestern Research Foundation (ANWF21-0102).
Publisher Copyright:
© 2022 IEEE.
Keywords
- COVID-19
- Machine Learning
- Mortality Prediction
- Transfer Learning