## Abstract

Certain Catmull-Rom splines interpolate their control vertices and share many properties such as affine invariance global smoothness and local control with B-spline curves; they are therefore of possible interest to computer aided design. It is shown that another property a class of Catmull-Rom splines shares with B-spline curves is that both schemes possess a simple recursive evaluation algorithm. The Catmull-Rom evaluation algorithm is constructed by combining the de Boor algorithm for evaluating B-spline curves with Neville's algorithm for evaluating Lagrange polynomials. The recursive evaluation algorithm for Catmull-Rom curves allows rapid evaluation of these curves by pipelining with specially designed hardware. It facilitates the development of new, related curve schemes which may have useful shape parameters for altering the shape of the curve without moving the control vertices. It may also be used for constructing transformations to Besier and B-spline form.

Original language | English (US) |
---|---|

Pages | 199-204 |

Number of pages | 6 |

Volume | 22 |

No | 4 |

Specialist publication | Computer Graphics (ACM) |

DOIs | |

State | Published - 1988 |