Recrystallization and Grain Growth in Accumulative Roll-Bonded Metal Composites

Rodney J. McCabe, John S. Carpenter, Sven Vogel, Nathan A. Mara, Irene J. Beyerlein

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

We examine recrystallization and grain growth during processing of accumulative roll-bonded (ARB) Cu-Nb and Zr-Nb composites. Throughout the ARB process, from initial millimeter thick layers down to nanometer thick layers, the mechanism for recrystallization and grain growth is the motion of high-angle grain boundaries (HAGBs). However, the driving forces for these phenomena change as the densities of different types of defects evolve during the process. The creation and redistribution of dislocations, grain boundaries, and phase boundaries has significant effects on recrystallization and grain growth and, thus, on microstructural evolution. Both Cu-Nb and Zr-Nb exhibit a distinct transition in recrystallization and growth behavior at around 500-nm average layer thicknesses. For the thicker layered materials, the microstructure evolution during recrystallization and growth is determined by the density and distribution of dislocations and HAGBs. For layers less than 500 nm, the layers are largely one-grain thick and the grains are nearly dislocation free; coarsening of grains within layers at the nanoscale is due to reduction in phase boundary energy.

Original languageEnglish (US)
Pages (from-to)2810-2819
Number of pages10
JournalJOM
Volume67
Issue number12
DOIs
StatePublished - Dec 1 2015

Bibliographical note

Funding Information:
This work was supported by the Los Alamos National Laboratory Directed Research and Development (LDRD) Project 20140348ER. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Neutron diffraction results were collected on the High Pressure Preferred Orientation (HIPPO) beam line at the Los Alamos Neutron Science Center. Electron microscopy was performed at the Los Alamos Electron Microscopy Laboratory.

Publisher Copyright:
© 2015, The Minerals, Metals & Materials Society (outside the U.S.).

Fingerprint

Dive into the research topics of 'Recrystallization and Grain Growth in Accumulative Roll-Bonded Metal Composites'. Together they form a unique fingerprint.

Cite this