TY - JOUR
T1 - Recovery of low-rank plus compressed sparse matrices with application to unveiling traffic anomalies
AU - Mardani, Morteza
AU - Mateos, Gonzalo
AU - Giannakis, Georgios B.
PY - 2013
Y1 - 2013
N2 - Given the noiseless superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, the goal of this paper is to establish deterministic conditions under which exact recovery of the low-rank and sparse components becomes possible. This fundamental identifiability issue arises with traffic anomaly detection in backbone networks, and subsumes compressed sensing as well as the timely low-rank plus sparse matrix recovery tasks encountered in matrix decomposition problems. Leveraging the ability of 1 and nuclear norms to recover sparse and low-rank matrices, a convex program is formulated to estimate the unknowns. Analysis and simulations confirm that the said convex program can recover the unknowns for sufficiently low-rank and sparse enough components, along with a compression matrix possessing an isometry property when restricted to operate on sparse vectors. When the low-rank, sparse, and compression matrices are drawn from certain random ensembles, it is established that exact recovery is possible with high probability. First-order algorithms are developed to solve the nonsmooth convex optimization problem with provable iteration complexity guarantees. Insightful tests with synthetic and real network data corroborate the effectiveness of the novel approach in unveiling traffic anomalies across flows and time, and its ability to outperform existing alternatives.
AB - Given the noiseless superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, the goal of this paper is to establish deterministic conditions under which exact recovery of the low-rank and sparse components becomes possible. This fundamental identifiability issue arises with traffic anomaly detection in backbone networks, and subsumes compressed sensing as well as the timely low-rank plus sparse matrix recovery tasks encountered in matrix decomposition problems. Leveraging the ability of 1 and nuclear norms to recover sparse and low-rank matrices, a convex program is formulated to estimate the unknowns. Analysis and simulations confirm that the said convex program can recover the unknowns for sufficiently low-rank and sparse enough components, along with a compression matrix possessing an isometry property when restricted to operate on sparse vectors. When the low-rank, sparse, and compression matrices are drawn from certain random ensembles, it is established that exact recovery is possible with high probability. First-order algorithms are developed to solve the nonsmooth convex optimization problem with provable iteration complexity guarantees. Insightful tests with synthetic and real network data corroborate the effectiveness of the novel approach in unveiling traffic anomalies across flows and time, and its ability to outperform existing alternatives.
KW - Convex optimization
KW - identifiability
KW - low rank
KW - sparsity
KW - traffic volume anomalies
UR - http://www.scopus.com/inward/record.url?scp=84873863112&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873863112&partnerID=8YFLogxK
U2 - 10.1109/TIT.2013.2257913
DO - 10.1109/TIT.2013.2257913
M3 - Article
AN - SCOPUS:84873863112
SN - 0018-9448
VL - 59
SP - 5186
EP - 5205
JO - IEEE Transactions on Information Theory
JF - IEEE Transactions on Information Theory
IS - 8
M1 - 6497613
ER -