TY - JOUR
T1 - Recovery of five cool-season turfgrasses following long-term ice encasement
AU - Watkins, Eric
AU - Petrella, Dominic P
AU - Aamlid, Trygve
AU - Christensen, Dominic C.
AU - Dalmannsdottir, Sigridur
AU - Hollman, Andrew P.
AU - Deters, Gary
N1 - Publisher Copyright:
© 2025 The Author(s). Crop Science published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
PY - 2025/3/1
Y1 - 2025/3/1
N2 - Ice encasement is a major concern for turfgrass managers in cold climates; however, there is a lack of data about both which turfgrasses are best suited for survival under these conditions and the reasons behind the superior recovery of some grasses from long-term ice encasement. In this study, we encased golf course putting greens-height field plots of creeping bentgrass (Agrostis stolonifera L.), velvet bentgrass (Agrostis canina L.), annual bluegrass (Poa annua L. var. reptans Hausskn.), Chewings fescue (Festuca. rubra L. ssp. commutata Gaudin), and slender creeping red fescue (F. rubra L. ssp. littoralis (G. Mey.) Auquier) with ice for 90–120 days with the inclusion of CO2, O2, and temperature sensors at 2.5 and 12.5 cm depth to better understand environmental conditions under ice and factors related to winterkill. Velvet bentgrass had the best overall performance and recovery, while annual bluegrass did not survive. Differences in recovery among turfgrass taxa may have been affected by the length of the ice encasement period, higher CO2 levels (>40,000 ppm), and lower O2 values, particularly in the second experimental run. During the recovery period in both years, photochemical efficiency values began increasing 5–10 days before percent green cover, suggesting that visual performance of the turf surface is a lagging indicator of recovery. Overall, recovery from ice encasement was annual bluegrass < Chewings fescue < creeping bentgrass = slender creeping red fescue = velvet bentgrass. These results can guide turfgrass managers in making species selection decisions in areas where long-duration ice encasement is a risk.
AB - Ice encasement is a major concern for turfgrass managers in cold climates; however, there is a lack of data about both which turfgrasses are best suited for survival under these conditions and the reasons behind the superior recovery of some grasses from long-term ice encasement. In this study, we encased golf course putting greens-height field plots of creeping bentgrass (Agrostis stolonifera L.), velvet bentgrass (Agrostis canina L.), annual bluegrass (Poa annua L. var. reptans Hausskn.), Chewings fescue (Festuca. rubra L. ssp. commutata Gaudin), and slender creeping red fescue (F. rubra L. ssp. littoralis (G. Mey.) Auquier) with ice for 90–120 days with the inclusion of CO2, O2, and temperature sensors at 2.5 and 12.5 cm depth to better understand environmental conditions under ice and factors related to winterkill. Velvet bentgrass had the best overall performance and recovery, while annual bluegrass did not survive. Differences in recovery among turfgrass taxa may have been affected by the length of the ice encasement period, higher CO2 levels (>40,000 ppm), and lower O2 values, particularly in the second experimental run. During the recovery period in both years, photochemical efficiency values began increasing 5–10 days before percent green cover, suggesting that visual performance of the turf surface is a lagging indicator of recovery. Overall, recovery from ice encasement was annual bluegrass < Chewings fescue < creeping bentgrass = slender creeping red fescue = velvet bentgrass. These results can guide turfgrass managers in making species selection decisions in areas where long-duration ice encasement is a risk.
UR - http://www.scopus.com/inward/record.url?scp=105002470347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105002470347&partnerID=8YFLogxK
U2 - 10.1002/csc2.70053
DO - 10.1002/csc2.70053
M3 - Article
AN - SCOPUS:105002470347
SN - 0011-183X
VL - 65
JO - Crop Science
JF - Crop Science
IS - 2
M1 - e70053
ER -