Recommendations for reporting ion mobility Mass Spectrometry measurements

Valérie Gabelica, Alexandre A. Shvartsburg, Carlos Afonso, Perdita Barran, Justin L.P. Benesch, Christian Bleiholder, Michael T. Bowers, Aivett Bilbao, Matthew F. Bush, J. Larry Campbell, Iain D.G. Campuzano, Tim Causon, Brian H. Clowers, Colin S. Creaser, Edwin De Pauw, Johann Far, Francisco Fernandez-Lima, John C. Fjeldsted, Kevin Giles, Michael Groessl & 14 others Chris Hogan, Stephan Hann, Hugh I. Kim, Ruwan T. Kurulugama, Jody C. May, John A. McLean, Kevin Pagel, Keith Richardson, Mark E. Ridgeway, Frédéric Rosu, Frank Sobott, Konstantinos Thalassinos, Stephen J. Valentine, Thomas Wyttenbach

Research output: Contribution to journalReview article

19 Citations (Scopus)

Abstract

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so.

Original languageEnglish (US)
Pages (from-to)291-320
Number of pages30
JournalMass Spectrometry Reviews
Volume38
Issue number3
DOIs
StatePublished - May 1 2019

Fingerprint

recommendations
Mass spectrometry
Mass Spectrometry
mass spectroscopy
Ions
ions
Gases
gas temperature
Temperature
Baths
Calibration
Uncertainty
collisions
cross sections
Research Personnel
baths
Experiments

Cite this

Gabelica, V., Shvartsburg, A. A., Afonso, C., Barran, P., Benesch, J. L. P., Bleiholder, C., ... Wyttenbach, T. (2019). Recommendations for reporting ion mobility Mass Spectrometry measurements. Mass Spectrometry Reviews, 38(3), 291-320. https://doi.org/10.1002/mas.21585

Recommendations for reporting ion mobility Mass Spectrometry measurements. / Gabelica, Valérie; Shvartsburg, Alexandre A.; Afonso, Carlos; Barran, Perdita; Benesch, Justin L.P.; Bleiholder, Christian; Bowers, Michael T.; Bilbao, Aivett; Bush, Matthew F.; Campbell, J. Larry; Campuzano, Iain D.G.; Causon, Tim; Clowers, Brian H.; Creaser, Colin S.; De Pauw, Edwin; Far, Johann; Fernandez-Lima, Francisco; Fjeldsted, John C.; Giles, Kevin; Groessl, Michael; Hogan, Chris; Hann, Stephan; Kim, Hugh I.; Kurulugama, Ruwan T.; May, Jody C.; McLean, John A.; Pagel, Kevin; Richardson, Keith; Ridgeway, Mark E.; Rosu, Frédéric; Sobott, Frank; Thalassinos, Konstantinos; Valentine, Stephen J.; Wyttenbach, Thomas.

In: Mass Spectrometry Reviews, Vol. 38, No. 3, 01.05.2019, p. 291-320.

Research output: Contribution to journalReview article

Gabelica, V, Shvartsburg, AA, Afonso, C, Barran, P, Benesch, JLP, Bleiholder, C, Bowers, MT, Bilbao, A, Bush, MF, Campbell, JL, Campuzano, IDG, Causon, T, Clowers, BH, Creaser, CS, De Pauw, E, Far, J, Fernandez-Lima, F, Fjeldsted, JC, Giles, K, Groessl, M, Hogan, C, Hann, S, Kim, HI, Kurulugama, RT, May, JC, McLean, JA, Pagel, K, Richardson, K, Ridgeway, ME, Rosu, F, Sobott, F, Thalassinos, K, Valentine, SJ & Wyttenbach, T 2019, 'Recommendations for reporting ion mobility Mass Spectrometry measurements', Mass Spectrometry Reviews, vol. 38, no. 3, pp. 291-320. https://doi.org/10.1002/mas.21585
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JLP, Bleiholder C et al. Recommendations for reporting ion mobility Mass Spectrometry measurements. Mass Spectrometry Reviews. 2019 May 1;38(3):291-320. https://doi.org/10.1002/mas.21585
Gabelica, Valérie ; Shvartsburg, Alexandre A. ; Afonso, Carlos ; Barran, Perdita ; Benesch, Justin L.P. ; Bleiholder, Christian ; Bowers, Michael T. ; Bilbao, Aivett ; Bush, Matthew F. ; Campbell, J. Larry ; Campuzano, Iain D.G. ; Causon, Tim ; Clowers, Brian H. ; Creaser, Colin S. ; De Pauw, Edwin ; Far, Johann ; Fernandez-Lima, Francisco ; Fjeldsted, John C. ; Giles, Kevin ; Groessl, Michael ; Hogan, Chris ; Hann, Stephan ; Kim, Hugh I. ; Kurulugama, Ruwan T. ; May, Jody C. ; McLean, John A. ; Pagel, Kevin ; Richardson, Keith ; Ridgeway, Mark E. ; Rosu, Frédéric ; Sobott, Frank ; Thalassinos, Konstantinos ; Valentine, Stephen J. ; Wyttenbach, Thomas. / Recommendations for reporting ion mobility Mass Spectrometry measurements. In: Mass Spectrometry Reviews. 2019 ; Vol. 38, No. 3. pp. 291-320.
@article{cd07b4652235464b967d559baf308f17,
title = "Recommendations for reporting ion mobility Mass Spectrometry measurements",
abstract = "Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so.",
author = "Val{\'e}rie Gabelica and Shvartsburg, {Alexandre A.} and Carlos Afonso and Perdita Barran and Benesch, {Justin L.P.} and Christian Bleiholder and Bowers, {Michael T.} and Aivett Bilbao and Bush, {Matthew F.} and Campbell, {J. Larry} and Campuzano, {Iain D.G.} and Tim Causon and Clowers, {Brian H.} and Creaser, {Colin S.} and {De Pauw}, Edwin and Johann Far and Francisco Fernandez-Lima and Fjeldsted, {John C.} and Kevin Giles and Michael Groessl and Chris Hogan and Stephan Hann and Kim, {Hugh I.} and Kurulugama, {Ruwan T.} and May, {Jody C.} and McLean, {John A.} and Kevin Pagel and Keith Richardson and Ridgeway, {Mark E.} and Fr{\'e}d{\'e}ric Rosu and Frank Sobott and Konstantinos Thalassinos and Valentine, {Stephen J.} and Thomas Wyttenbach",
year = "2019",
month = "5",
day = "1",
doi = "10.1002/mas.21585",
language = "English (US)",
volume = "38",
pages = "291--320",
journal = "Mass Spectrometry Reviews",
issn = "0277-7037",
publisher = "John Wiley and Sons Inc.",
number = "3",

}

TY - JOUR

T1 - Recommendations for reporting ion mobility Mass Spectrometry measurements

AU - Gabelica, Valérie

AU - Shvartsburg, Alexandre A.

AU - Afonso, Carlos

AU - Barran, Perdita

AU - Benesch, Justin L.P.

AU - Bleiholder, Christian

AU - Bowers, Michael T.

AU - Bilbao, Aivett

AU - Bush, Matthew F.

AU - Campbell, J. Larry

AU - Campuzano, Iain D.G.

AU - Causon, Tim

AU - Clowers, Brian H.

AU - Creaser, Colin S.

AU - De Pauw, Edwin

AU - Far, Johann

AU - Fernandez-Lima, Francisco

AU - Fjeldsted, John C.

AU - Giles, Kevin

AU - Groessl, Michael

AU - Hogan, Chris

AU - Hann, Stephan

AU - Kim, Hugh I.

AU - Kurulugama, Ruwan T.

AU - May, Jody C.

AU - McLean, John A.

AU - Pagel, Kevin

AU - Richardson, Keith

AU - Ridgeway, Mark E.

AU - Rosu, Frédéric

AU - Sobott, Frank

AU - Thalassinos, Konstantinos

AU - Valentine, Stephen J.

AU - Wyttenbach, Thomas

PY - 2019/5/1

Y1 - 2019/5/1

N2 - Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so.

AB - Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so.

UR - http://www.scopus.com/inward/record.url?scp=85060850796&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060850796&partnerID=8YFLogxK

U2 - 10.1002/mas.21585

DO - 10.1002/mas.21585

M3 - Review article

VL - 38

SP - 291

EP - 320

JO - Mass Spectrometry Reviews

JF - Mass Spectrometry Reviews

SN - 0277-7037

IS - 3

ER -