Reassessing obsidian field relationships at Glass Buttes, Oregon

Ellery Frahm, Joshua M Feinberg

Research output: Contribution to journalArticle

  • 10 Citations

Abstract

The Glass Buttes complex in the High Lava Plains of Oregon produced obsidians during a series of rhyolitic eruptions circa 5.8 to 6.5. Ma. These obsidians have been used to craft stone tools for millennia, from Clovis peoples to modern knappers, and have been recovered at sites throughout the Pacific Northwest. Glass Buttes is also the origin of much obsidian used for lithic replication experiments and to test new techniques for sourcing. Paradoxically, the spatial distributions of chemically distinct obsidians at this complex have received comparatively little attention. The only published study to connect obsidian compositional differences to the Glass Buttes landscape is Ambroz et al. (2001), who reported seven discrete, spatially constrained obsidian "chemical groups" based on clustered data in elemental scatterplots. Since its publication, their paper has been cited as an example of successful obsidian "subsource" characterization. During the course of a wider research program, we collected 337 specimens at Glass Buttes from loci originally sampled by Ambroz et al. (2001). While we could replicate the "chemical groups" observed by Ambroz et al. (2001), we were unable to reproduce the reported spatial distribution of sources across the landscape. Almost half of the resampled loci exhibited intermingled populations of chemical types due to their locations on alluvial-colluvial deposits. We also identified five additional obsidian chemical types at the complex; however, geochemically significant elements suggest that only a subset of these eleven types correspond to different flows and domes at Glass Buttes. A few appear to reflect chemical zoning within flows, whereas two other types may be exogenous, moved from nearby obsidian sources via secondary transport. Thus, we demonstrate here that the discrete subsource zones demarcated by Ambroz et al. (2001) do not reflect reality on the landscape. This, in turn, alters how artifact sourcing results are interpreted with respect to how mobile foraging groups interacted with the landscape and made choices regarding resource acquisition, toolstone provisioning, and land use.

LanguageEnglish (US)
Pages654-665
Number of pages12
JournalJournal of Archaeological Science: Reports
Volume2
DOIs
StatePublished - Jun 1 2015

Fingerprint

Group
zoning
artifact
land use
Obsidian
Oregon
experiment
resources
Locus
Spatial Distribution
Sourcing
Foraging
Lithics
Stone Tools
Research Program
Pacific Northwest
Dome
Land Use
Resources
Replication Experiment

Keywords

  • Glass Buttes
  • High Lava Plains
  • Obsidian sourcing
  • Oregon
  • Portable XRF

Cite this

Reassessing obsidian field relationships at Glass Buttes, Oregon. / Frahm, Ellery; Feinberg, Joshua M.

In: Journal of Archaeological Science: Reports, Vol. 2, 01.06.2015, p. 654-665.

Research output: Contribution to journalArticle

@article{0d922ad2234642f3a7bd6376606bc88d,
title = "Reassessing obsidian field relationships at Glass Buttes, Oregon",
abstract = "The Glass Buttes complex in the High Lava Plains of Oregon produced obsidians during a series of rhyolitic eruptions circa 5.8 to 6.5. Ma. These obsidians have been used to craft stone tools for millennia, from Clovis peoples to modern knappers, and have been recovered at sites throughout the Pacific Northwest. Glass Buttes is also the origin of much obsidian used for lithic replication experiments and to test new techniques for sourcing. Paradoxically, the spatial distributions of chemically distinct obsidians at this complex have received comparatively little attention. The only published study to connect obsidian compositional differences to the Glass Buttes landscape is Ambroz et al. (2001), who reported seven discrete, spatially constrained obsidian {"}chemical groups{"} based on clustered data in elemental scatterplots. Since its publication, their paper has been cited as an example of successful obsidian {"}subsource{"} characterization. During the course of a wider research program, we collected 337 specimens at Glass Buttes from loci originally sampled by Ambroz et al. (2001). While we could replicate the {"}chemical groups{"} observed by Ambroz et al. (2001), we were unable to reproduce the reported spatial distribution of sources across the landscape. Almost half of the resampled loci exhibited intermingled populations of chemical types due to their locations on alluvial-colluvial deposits. We also identified five additional obsidian chemical types at the complex; however, geochemically significant elements suggest that only a subset of these eleven types correspond to different flows and domes at Glass Buttes. A few appear to reflect chemical zoning within flows, whereas two other types may be exogenous, moved from nearby obsidian sources via secondary transport. Thus, we demonstrate here that the discrete subsource zones demarcated by Ambroz et al. (2001) do not reflect reality on the landscape. This, in turn, alters how artifact sourcing results are interpreted with respect to how mobile foraging groups interacted with the landscape and made choices regarding resource acquisition, toolstone provisioning, and land use.",
keywords = "Glass Buttes, High Lava Plains, Obsidian sourcing, Oregon, Portable XRF",
author = "Ellery Frahm and Feinberg, {Joshua M}",
year = "2015",
month = "6",
day = "1",
doi = "10.1016/j.jasrep.2014.11.007",
language = "English (US)",
volume = "2",
pages = "654--665",
journal = "Journal of Archaeological Science: Reports",
issn = "2352-409X",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Reassessing obsidian field relationships at Glass Buttes, Oregon

AU - Frahm, Ellery

AU - Feinberg, Joshua M

PY - 2015/6/1

Y1 - 2015/6/1

N2 - The Glass Buttes complex in the High Lava Plains of Oregon produced obsidians during a series of rhyolitic eruptions circa 5.8 to 6.5. Ma. These obsidians have been used to craft stone tools for millennia, from Clovis peoples to modern knappers, and have been recovered at sites throughout the Pacific Northwest. Glass Buttes is also the origin of much obsidian used for lithic replication experiments and to test new techniques for sourcing. Paradoxically, the spatial distributions of chemically distinct obsidians at this complex have received comparatively little attention. The only published study to connect obsidian compositional differences to the Glass Buttes landscape is Ambroz et al. (2001), who reported seven discrete, spatially constrained obsidian "chemical groups" based on clustered data in elemental scatterplots. Since its publication, their paper has been cited as an example of successful obsidian "subsource" characterization. During the course of a wider research program, we collected 337 specimens at Glass Buttes from loci originally sampled by Ambroz et al. (2001). While we could replicate the "chemical groups" observed by Ambroz et al. (2001), we were unable to reproduce the reported spatial distribution of sources across the landscape. Almost half of the resampled loci exhibited intermingled populations of chemical types due to their locations on alluvial-colluvial deposits. We also identified five additional obsidian chemical types at the complex; however, geochemically significant elements suggest that only a subset of these eleven types correspond to different flows and domes at Glass Buttes. A few appear to reflect chemical zoning within flows, whereas two other types may be exogenous, moved from nearby obsidian sources via secondary transport. Thus, we demonstrate here that the discrete subsource zones demarcated by Ambroz et al. (2001) do not reflect reality on the landscape. This, in turn, alters how artifact sourcing results are interpreted with respect to how mobile foraging groups interacted with the landscape and made choices regarding resource acquisition, toolstone provisioning, and land use.

AB - The Glass Buttes complex in the High Lava Plains of Oregon produced obsidians during a series of rhyolitic eruptions circa 5.8 to 6.5. Ma. These obsidians have been used to craft stone tools for millennia, from Clovis peoples to modern knappers, and have been recovered at sites throughout the Pacific Northwest. Glass Buttes is also the origin of much obsidian used for lithic replication experiments and to test new techniques for sourcing. Paradoxically, the spatial distributions of chemically distinct obsidians at this complex have received comparatively little attention. The only published study to connect obsidian compositional differences to the Glass Buttes landscape is Ambroz et al. (2001), who reported seven discrete, spatially constrained obsidian "chemical groups" based on clustered data in elemental scatterplots. Since its publication, their paper has been cited as an example of successful obsidian "subsource" characterization. During the course of a wider research program, we collected 337 specimens at Glass Buttes from loci originally sampled by Ambroz et al. (2001). While we could replicate the "chemical groups" observed by Ambroz et al. (2001), we were unable to reproduce the reported spatial distribution of sources across the landscape. Almost half of the resampled loci exhibited intermingled populations of chemical types due to their locations on alluvial-colluvial deposits. We also identified five additional obsidian chemical types at the complex; however, geochemically significant elements suggest that only a subset of these eleven types correspond to different flows and domes at Glass Buttes. A few appear to reflect chemical zoning within flows, whereas two other types may be exogenous, moved from nearby obsidian sources via secondary transport. Thus, we demonstrate here that the discrete subsource zones demarcated by Ambroz et al. (2001) do not reflect reality on the landscape. This, in turn, alters how artifact sourcing results are interpreted with respect to how mobile foraging groups interacted with the landscape and made choices regarding resource acquisition, toolstone provisioning, and land use.

KW - Glass Buttes

KW - High Lava Plains

KW - Obsidian sourcing

KW - Oregon

KW - Portable XRF

UR - http://www.scopus.com/inward/record.url?scp=84937958372&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84937958372&partnerID=8YFLogxK

U2 - 10.1016/j.jasrep.2014.11.007

DO - 10.1016/j.jasrep.2014.11.007

M3 - Article

VL - 2

SP - 654

EP - 665

JO - Journal of Archaeological Science: Reports

T2 - Journal of Archaeological Science: Reports

JF - Journal of Archaeological Science: Reports

SN - 2352-409X

ER -