TY - JOUR

T1 - Realizability of the adams-novikov spectral sequence for formal a-modules

AU - Lawson, Tyler

PY - 2007/3

Y1 - 2007/3

N2 - We show that the formal A-module Adams-Novikov spectral sequence of Ravenel does not naturally arise from a filtration on a map of spectra by examining the case A = Z[i]. We also prove that when A is the ring of integers in a nontrivial extension of Qp, the map (L,W) → (LA,WA) of Hopf algebroids, classifying formal groups and formal A-modules respectively, does not arise from compatible maps of E∞-ring spectra (MU,MUΛMU) → (R, S).

AB - We show that the formal A-module Adams-Novikov spectral sequence of Ravenel does not naturally arise from a filtration on a map of spectra by examining the case A = Z[i]. We also prove that when A is the ring of integers in a nontrivial extension of Qp, the map (L,W) → (LA,WA) of Hopf algebroids, classifying formal groups and formal A-modules respectively, does not arise from compatible maps of E∞-ring spectra (MU,MUΛMU) → (R, S).

UR - http://www.scopus.com/inward/record.url?scp=77950670017&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950670017&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-06-08521-2

DO - 10.1090/S0002-9939-06-08521-2

M3 - Article

AN - SCOPUS:77950670017

SN - 0002-9939

VL - 135

SP - 883

EP - 890

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

IS - 3

ER -