Real-time 3D model-based tracking using edge and keypoint features for robotic manipulation

Changhyun Choi, Henrik I. Christensen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

65 Scopus citations

Abstract

We propose a combined approach for 3D real-time object recognition and tracking, which is directly applicable to robotic manipulation. We use keypoints features for the initial pose estimation. This pose estimate serves as an initial estimate for edge-based tracking. The combination of these two complementary methods provides an efficient and robust tracking solution. The main contributions of this paper includes: 1) While most of the RAPID style tracking methods have used simplified CAD models or at least manually well designed models, our system can handle any form of polygon mesh model. To achieve the generality of object shapes, salient edges are automatically identified during an offline stage. Dull edges usually invisible in images are maintained as well for the cases when they constitute the object boundaries. 2) Our system provides a fully automatic recognition and tracking solution, unlike most of the previous edge-based tracking that require a manual pose initialization scheme. Since the edge-based tracking sometimes drift because of edge ambiguity, the proposed system monitors the tracking results and occasionally re-initialize when the tracking results are inconsistent. Experimental results demonstrate our system's efficiency as well as robustness.

Original languageEnglish (US)
Title of host publication2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Pages4048-4055
Number of pages8
DOIs
StatePublished - Aug 26 2010
Event2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
Duration: May 3 2010May 7 2010

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Country/TerritoryUnited States
CityAnchorage, AK
Period5/3/105/7/10

Fingerprint

Dive into the research topics of 'Real-time 3D model-based tracking using edge and keypoint features for robotic manipulation'. Together they form a unique fingerprint.

Cite this