Re-expression of CA1 and entorhinal activity patterns preserves temporal context memory at long timescales

Futing Zou, Guo Wanjia, Emily J. Allen, Yihan Wu, Ian Charest, Thomas Naselaris, Kendrick Kay, Brice A. Kuhl, J. Benjamin Hutchinson, Sarah DuBrow

Research output: Contribution to journalArticlepeer-review


Converging, cross-species evidence indicates that memory for time is supported by hippocampal area CA1 and entorhinal cortex. However, limited evidence characterizes how these regions preserve temporal memories over long timescales (e.g., months). At long timescales, memoranda may be encountered in multiple temporal contexts, potentially creating interference. Here, using 7T fMRI, we measured CA1 and entorhinal activity patterns as human participants viewed thousands of natural scene images distributed, and repeated, across many months. We show that memory for an image’s original temporal context was predicted by the degree to which CA1/entorhinal activity patterns from the first encounter with an image were re-expressed during re-encounters occurring minutes to months later. Critically, temporal memory signals were dissociable from predictors of recognition confidence, which were carried by distinct medial temporal lobe expressions. These findings suggest that CA1 and entorhinal cortex preserve temporal memories across long timescales by coding for and reinstating temporal context information.

Original languageEnglish (US)
Article number4350
JournalNature communications
Issue number1
StatePublished - Dec 2023

Bibliographical note

Funding Information:
This work is dedicated to Sarah DuBrow, who passed away before manuscript completion and without whom none of this would have happened. We thank Vishnu P. Murty for feedback on previous versions of the manuscript, and members of the DuBrow lab and the Hutchinson lab for helpful discussions. This work was supported by Sloan Research Fellowship FG-2020-13455 (S.D.) and NIH R01 NS089729 (B.A.K.). Collection of the NSD dataset was supported by NSF IIS-1822683 (K.K.) and NSF IIS-1822929 (T.N.).

Publisher Copyright:
© 2023, The Author(s).


Dive into the research topics of 'Re-expression of CA1 and entorhinal activity patterns preserves temporal context memory at long timescales'. Together they form a unique fingerprint.

Cite this