TY - JOUR
T1 - Rax2 is important for directional establishment of growth sites, but not for reorientation of growth axes, during Candida albicans hyphal morphogenesis
AU - Gonia, Sara
AU - Norton, Jennifer
AU - Watanaskul, Lindy
AU - Pulver, Rebecca
AU - Morrison, Emma
AU - Brand, Alexandra
AU - Gale, Cheryl A.
N1 - Funding Information:
This study was funded by NIH R01AI057440 and University of Minnesota Pediatrics Foundation awards to CAG.
PY - 2013/7
Y1 - 2013/7
N2 - Hyphae of filamentous fungi maintain generally linear growth over long distances. In Candida albicans, hyphae are able to reorient their growth in the direction of certain environmental cues. In previous work, the C. albicans bud-site selection proteins Rsr1 and Bud2 were identified as important for hyphae to maintain linear growth and were necessary for hyphal responses to directional cues in the environment (tropisms). To ask if hyphal directional responses are general functions of all yeast bud-site selection proteins, we studied the role of Rax2, ortholog of the Saccharomyces cerevisiae bud-site selection protein Rax2, in C. albicans hyphal morphogenesis. Rax2-YFP localized to the hyphal cell surface in puncta and at the hyphal tip in a crescent. Strains lacking Rax2 had hyphal morphologies that did not differ from control strains. In non-cued growth conditions, rax2 mutant strains had defects in both yeast (bud) and hyphal (branch) site selection and mutant hyphae exhibited non-linear growth trajectories as compared to control hyphae. In contrast, when encountering a directional environmental cue, hyphae lacking Rax2 retained the ability to reorient growth in response to both topographical (thigmotropism) and electric-field (galvanotropism) stimuli but exhibited a reduced ability to establish hyphal growth in the direction of a cathodal stimulus. In conclusion, these results indicate that C. albicans Rax2 is important for establishing sites of emergence of yeast and hyphal daughters and for maintaining the linearity of hyphal growth. In contrast to Rsr1 and Bud2, Rax2 is not involved in responses that require a reorientation of the direction of already established hyphal growth (tropisms). Thus, it appears that some hyphal directionality responses are separable in that they are mediated by a different set of polarity proteins.
AB - Hyphae of filamentous fungi maintain generally linear growth over long distances. In Candida albicans, hyphae are able to reorient their growth in the direction of certain environmental cues. In previous work, the C. albicans bud-site selection proteins Rsr1 and Bud2 were identified as important for hyphae to maintain linear growth and were necessary for hyphal responses to directional cues in the environment (tropisms). To ask if hyphal directional responses are general functions of all yeast bud-site selection proteins, we studied the role of Rax2, ortholog of the Saccharomyces cerevisiae bud-site selection protein Rax2, in C. albicans hyphal morphogenesis. Rax2-YFP localized to the hyphal cell surface in puncta and at the hyphal tip in a crescent. Strains lacking Rax2 had hyphal morphologies that did not differ from control strains. In non-cued growth conditions, rax2 mutant strains had defects in both yeast (bud) and hyphal (branch) site selection and mutant hyphae exhibited non-linear growth trajectories as compared to control hyphae. In contrast, when encountering a directional environmental cue, hyphae lacking Rax2 retained the ability to reorient growth in response to both topographical (thigmotropism) and electric-field (galvanotropism) stimuli but exhibited a reduced ability to establish hyphal growth in the direction of a cathodal stimulus. In conclusion, these results indicate that C. albicans Rax2 is important for establishing sites of emergence of yeast and hyphal daughters and for maintaining the linearity of hyphal growth. In contrast to Rsr1 and Bud2, Rax2 is not involved in responses that require a reorientation of the direction of already established hyphal growth (tropisms). Thus, it appears that some hyphal directionality responses are separable in that they are mediated by a different set of polarity proteins.
KW - Candida albicans
KW - Fungal morphogenesis
KW - Hyphal tropisms
KW - Polarity establishment
UR - http://www.scopus.com/inward/record.url?scp=84879506140&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879506140&partnerID=8YFLogxK
U2 - 10.1016/j.fgb.2013.04.002
DO - 10.1016/j.fgb.2013.04.002
M3 - Article
C2 - 23608319
AN - SCOPUS:84879506140
SN - 1087-1845
VL - 56
SP - 116
EP - 124
JO - Fungal Genetics and Biology
JF - Fungal Genetics and Biology
ER -