Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber

John W. Cain, Elena G. Tolkacheva, David G. Schaeffer, Daniel J. Gauthier

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing protocols lead to different APD restitution curves (RCs). This phenomenon, known as APD rate dependence, is a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also plays an important role in the spatiotemporal dynamics of cardiac tissue. We present results concerning rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our numerical simulations show that, independent of the amount of memory in the tissue, the wave-back velocity exhibits pronounced rate dependence and the wave-front velocity does not. Moreover, the discrepancy between wave-back velocity RCs is most significant for a small DI. We provide an analytical explanation of these results, using a system of coupled maps to relate the wave-front and wave-back velocities. Our calculations show that rate-dependent wave-back velocity can be present even if neither APD nor wave-front velocity exhibits rate dependence.

Original languageEnglish (US)
Number of pages1
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume70
Issue number6
DOIs
StatePublished - Jan 1 2004

Fingerprint

Action Potential
Cardiac
Fiber
Propagation
fibers
propagation
Dependent
wave fronts
Wave Front
intervals
rhythm
Coupled Maps
Curve
Interval
curves
Conduction
Discrepancy
conduction
Numerical Simulation

Cite this

Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber. / Cain, John W.; Tolkacheva, Elena G.; Schaeffer, David G.; Gauthier, Daniel J.

In: Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 70, No. 6, 01.01.2004.

Research output: Contribution to journalArticle

@article{153383a5d93e4c0f8f9df948d1aa1ce2,
title = "Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber",
abstract = "Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing protocols lead to different APD restitution curves (RCs). This phenomenon, known as APD rate dependence, is a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also plays an important role in the spatiotemporal dynamics of cardiac tissue. We present results concerning rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our numerical simulations show that, independent of the amount of memory in the tissue, the wave-back velocity exhibits pronounced rate dependence and the wave-front velocity does not. Moreover, the discrepancy between wave-back velocity RCs is most significant for a small DI. We provide an analytical explanation of these results, using a system of coupled maps to relate the wave-front and wave-back velocities. Our calculations show that rate-dependent wave-back velocity can be present even if neither APD nor wave-front velocity exhibits rate dependence.",
author = "Cain, {John W.} and Tolkacheva, {Elena G.} and Schaeffer, {David G.} and Gauthier, {Daniel J.}",
year = "2004",
month = "1",
day = "1",
doi = "10.1103/PhysRevE.70.061906",
language = "English (US)",
volume = "70",
journal = "Physical Review E - Statistical, Nonlinear, and Soft Matter Physics",
issn = "1539-3755",
publisher = "American Physical Society",
number = "6",

}

TY - JOUR

T1 - Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber

AU - Cain, John W.

AU - Tolkacheva, Elena G.

AU - Schaeffer, David G.

AU - Gauthier, Daniel J.

PY - 2004/1/1

Y1 - 2004/1/1

N2 - Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing protocols lead to different APD restitution curves (RCs). This phenomenon, known as APD rate dependence, is a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also plays an important role in the spatiotemporal dynamics of cardiac tissue. We present results concerning rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our numerical simulations show that, independent of the amount of memory in the tissue, the wave-back velocity exhibits pronounced rate dependence and the wave-front velocity does not. Moreover, the discrepancy between wave-back velocity RCs is most significant for a small DI. We provide an analytical explanation of these results, using a system of coupled maps to relate the wave-front and wave-back velocities. Our calculations show that rate-dependent wave-back velocity can be present even if neither APD nor wave-front velocity exhibits rate dependence.

AB - Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing protocols lead to different APD restitution curves (RCs). This phenomenon, known as APD rate dependence, is a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also plays an important role in the spatiotemporal dynamics of cardiac tissue. We present results concerning rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our numerical simulations show that, independent of the amount of memory in the tissue, the wave-back velocity exhibits pronounced rate dependence and the wave-front velocity does not. Moreover, the discrepancy between wave-back velocity RCs is most significant for a small DI. We provide an analytical explanation of these results, using a system of coupled maps to relate the wave-front and wave-back velocities. Our calculations show that rate-dependent wave-back velocity can be present even if neither APD nor wave-front velocity exhibits rate dependence.

UR - http://www.scopus.com/inward/record.url?scp=41349091827&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=41349091827&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.70.061906

DO - 10.1103/PhysRevE.70.061906

M3 - Article

C2 - 15697401

AN - SCOPUS:41349091827

VL - 70

JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

SN - 1539-3755

IS - 6

ER -