TY - JOUR
T1 - Rapid reaction studies on the oxygenation reactions of catechol dioxygenase.
AU - Walsh, T. A.
AU - Ballou, D. P.
AU - Mayer, R.
AU - Que, L.
N1 - Copyright:
Medline is the source for the citation and abstract of this record.
PY - 1983/12/10
Y1 - 1983/12/10
N2 - The reaction of oxygen with catechol 1,2-dioxygenase from Pseudomonas arvilla ATCC 23974 in complex with catechol, 4-methylcatechol, and 4-fluorocatechol has been studied using single turnover stopped flow spectrophotometry. Two sequential enzyme intermediates have been resolved and their visible spectra characterized by computer-assisted methods. These intermediates are spectrally similar to those observed in a similar study with protocatechuate dioxygenase (Bull, C., Ballou, D. P., and Otsuka, S. J. Biol. Chem. 256, 12681-12686 (1981), although the first intermediate seen with the latter enzyme was not observed in this study. The rate of formation of intermediate I is oxygen-dependent and also accelerated by electron-donating substituents on the C-4 of the substrate. This is consistent with the proposed substrate reduction of dioxygen to form a hydroperoxide. Intermediate I is thus suggested to be a 6-hydroperoxycyclohexa-3,5-diene-1-one. The decay of intermediate I is also accelerated by electron donors and is consistent with the rearrangement of intermediate hydroperoxide via an acyl migration mechanism. It is inconsistent with mechanisms involving nucleophilic attack at the carbonyl carbon. Intermediate II is proposed to be an enzyme-product complex based on the resemblance of its visible spectra to those of the benzoate complex of catechol 1,2-dioxygenase and enzyme-product complexes of protocatechuate dioxygenase. Careful 18O2-labeling experiments have shown that no label is lost to the solvent, implying that no free hydroxide forms during catalysis.
AB - The reaction of oxygen with catechol 1,2-dioxygenase from Pseudomonas arvilla ATCC 23974 in complex with catechol, 4-methylcatechol, and 4-fluorocatechol has been studied using single turnover stopped flow spectrophotometry. Two sequential enzyme intermediates have been resolved and their visible spectra characterized by computer-assisted methods. These intermediates are spectrally similar to those observed in a similar study with protocatechuate dioxygenase (Bull, C., Ballou, D. P., and Otsuka, S. J. Biol. Chem. 256, 12681-12686 (1981), although the first intermediate seen with the latter enzyme was not observed in this study. The rate of formation of intermediate I is oxygen-dependent and also accelerated by electron-donating substituents on the C-4 of the substrate. This is consistent with the proposed substrate reduction of dioxygen to form a hydroperoxide. Intermediate I is thus suggested to be a 6-hydroperoxycyclohexa-3,5-diene-1-one. The decay of intermediate I is also accelerated by electron donors and is consistent with the rearrangement of intermediate hydroperoxide via an acyl migration mechanism. It is inconsistent with mechanisms involving nucleophilic attack at the carbonyl carbon. Intermediate II is proposed to be an enzyme-product complex based on the resemblance of its visible spectra to those of the benzoate complex of catechol 1,2-dioxygenase and enzyme-product complexes of protocatechuate dioxygenase. Careful 18O2-labeling experiments have shown that no label is lost to the solvent, implying that no free hydroxide forms during catalysis.
UR - http://www.scopus.com/inward/record.url?scp=0021100507&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021100507&partnerID=8YFLogxK
M3 - Article
C2 - 6643492
AN - SCOPUS:0021100507
SN - 0021-9258
VL - 258
SP - 14422
EP - 14427
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 23
ER -