Range-wide indicators of African great ape density distribution

Isabel Ordaz-Németh, Tenekwetche Sop, Bala Amarasekaran, Mona Bachmann, Christophe Boesch, Terry Brncic, Damien Caillaud, Geneviève Campbell, Joana Carvalho, Rebecca Chancellor, Tim R.B. Davenport, Dervla Dowd, Manasseh Eno-Nku, Jessica Ganas-Swaray, Nicholas Granier, Elizabeth Greengrass, Stefanie Heinicke, Ilka Herbinger, Clement Inkamba-Nkulu, Fortuné IyenguetJessica Junker, Kadiri S. Bobo, Alain Lushimba, Fiona Maisels, Guy Aimé Florent Malanda, Maureen S. McCarthy, Prosper Motsaba, Jennifer Moustgaard, Mizuki Murai, Bezangoye Ndokoue, Stuart Nixon, Rostand Aba a. Nseme, Zacharie Nzooh, Lilian Pintea, Andrew J. Plumptre, Justin Roy, Aaron Rundus, Jim Sanderson, Adeline Serckx, Samantha Strindberg, Clement Tweh, Hilde Vanleeuwe, Ashley Vosper, Matthias Waltert, Elizabeth A. Williamson, Michael Wilson, Roger Mundry, Hjalmar S. Kühl

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators.

Original languageEnglish (US)
Article numbere23338
JournalAmerican journal of primatology
Volume83
Issue number12
DOIs
StatePublished - Dec 2021

Bibliographical note

Publisher Copyright:
© 2021 The Authors. American Journal of Primatology published by Wiley Periodicals LLC

Keywords

  • Bonobo
  • IUCN SSC A.P.E.S. database
  • chimpanzee
  • gorilla
  • range-wide assessment

Fingerprint

Dive into the research topics of 'Range-wide indicators of African great ape density distribution'. Together they form a unique fingerprint.

Cite this