Quasi-Solid-State Rechargeable Li-O2 Batteries with High Safety and Long Cycle Life at Room Temperature

Sung Man Cho, Jimin Shim, Sung Ho Cho, Jiwoong Kim, Byung Dae Son, Jong Chan Lee, Woo Young Yoon

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

As interest in electric vehicles and mass energy storage systems continues to grow, Li-O2 batteries are attracting much attention as a candidate for next-generation energy storage systems owing to their high energy density. However, safety problems related to the use of lithium metal anodes have hampered the commercialization of Li-O2 batteries. Herein, we introduced a quasi-solid polymer electrolyte with excellent electrochemical, chemical, and thermal stabilities into Li-O2 batteries. The ion-conducting QSPE was prepared by gelling a polymer network matrix consisting of poly(ethylene glycol) methyl ether methacrylate, methacrylated tannic acid, lithium trifluoromethanesulfonate, and nanofumed silica with a small amount of liquid electrolyte. The quasi-solid-state Li-O2 cell consisted of a lithium powder anode, a quasi-solid polymer electrolyte, and a Pd3Co/multiwalled carbon nanotube cathode, which enhanced the electrochemical performance of the cell. This cell, which exhibited improved safety owing to the suppression of lithium dendrite growth, achieved a lifetime of 125 cycles at room temperature. These results show that the introduction of a quasi-solid electrolyte is a potentially new alternative for the commercialization of solid-state Li-O2 batteries.

Original languageEnglish (US)
Pages (from-to)15634-15641
Number of pages8
JournalACS Applied Materials and Interfaces
Volume10
Issue number18
DOIs
StatePublished - May 9 2018

Bibliographical note

Funding Information:
This study was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Korean government (MEST) (grant 2016R1A2B3009481). The SEM observations of the sample microstructures were performed with equipment located at the Korea Basic Science Institute, Seoul Center.

Publisher Copyright:
© 2018 American Chemical Society.

Keywords

  • lithium powder
  • lithium-oxygen battery
  • palladium-cobalt
  • quasi-solid-state
  • solid polymer electrolyte

Fingerprint

Dive into the research topics of 'Quasi-Solid-State Rechargeable Li-O2 Batteries with High Safety and Long Cycle Life at Room Temperature'. Together they form a unique fingerprint.

Cite this