Projects per year
Abstract
Two-dimensional (2D) ultra-high carrier densities are of considerable current research interest for novel plasmonic and high charge-gain devices. However, the highest 2D electron density obtained is thus far limited to 3 × 1014 cm-2 (Electron/unit cell/interface) at GdTiO3/SrTiO3 interfaces, and is typically an order of magnitude lower at LaAlO3/SrTiO3 interfaces. We show from experiment and modeling that carrier densities much higher than expected based on resolution of the polar discontinuity at perovskite oxide heterojunctions can be achieved via band engineering. The SrTiO3 (8 u.c.)/NdTiO3 (t u.c)/SrTiO3 (8 u.c.)/LSAT(001) heterostructure shows the expected electronic reconstruction behavior starting at t = 2 u.c., but then exhibits a higher carrier density regime at t ≥ 6 u.c. due to additional charge transfer from band alignment. Quasi 2D ultrahigh carrier density is realized at perovskite oxide heterojunctions using broken-gap alignment. The SrTiO3/NdTiO3 heterostructure shows the expected electronic reconstruction behavior with electron per unit cell up to a critical thickness (tcritical) of NdTiO3, but exhibits a higher carrier density regime at t > tcritical due to band alignment and charge transfer.
Original language | English (US) |
---|---|
Article number | 1500432 |
Journal | Advanced Materials Interfaces |
Volume | 3 |
Issue number | 2 |
DOIs | |
State | Published - Jan 21 2016 |
Bibliographical note
Publisher Copyright:© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
MRSEC Support
- Primary
Fingerprint
Dive into the research topics of 'Quasi 2D Ultrahigh Carrier Density in a Complex Oxide Broken-Gap Heterojunction'. Together they form a unique fingerprint.Projects
- 4 Finished
-
University of Minnesota MRSEC (DMR-1420013)
Lodge, T. P. (PI)
11/1/14 → 10/31/20
Project: Research project
-
MRSEC IRG-2: Sustainable Nanocrystal Materials
Kortshagen, U. R. (Coordinator), Aydil, E. S. (Senior Investigator), Campbell, S. A. (Senior Investigator), Francis, L. F. (Senior Investigator), Haynes, C. L. (Senior Investigator), Hogan, C. (Senior Investigator), Mkhoyan, A. (Senior Investigator), Shklovskii, B. I. (Senior Investigator) & Wang, X. (Senior Investigator)
11/1/14 → 10/31/20
Project: Research project
-
MRSEC IRG-1: Electrostatic Control of Materials
Leighton, C. (Coordinator), Birol, T. (Senior Investigator), Fernandes, R. M. (Senior Investigator), Frisbie, D. (Senior Investigator), Goldman, A. M. (Senior Investigator), Greven, M. (Senior Investigator), Jalan, B. (Senior Investigator), Koester, S. J. (Senior Investigator), He, T. (Researcher), Jeong, J. S. (Researcher), Koirala, S. (Researcher), Paul, A. (Researcher), Thoutam, L. R. (Researcher) & Yu, G. (Researcher)
11/1/14 → 10/31/20
Project: Research project