Abstract
We study charmonium and bottomonium as relativistic bound states in a light-front quantized Hamiltonian formalism. The effective Hamiltonian is based on light-front holography. We use a recently proposed longitudinal confinement to complete the soft-wall holographic potential for the heavy flavors. The spin structure is generated from the one-gluon exchange interaction with a running coupling. The adoption of asymptotic freedom improves the spectroscopy compared with previous light-front results. Within this model, we compute the mass spectroscopy, decay constants and the r.m.s. radii. We also present a detailed study of the obtained light-front wave functions and use the wave functions to compute the light-cone distributions, specifically the distribution amplitudes and parton distribution functions. Overall, our model provides a reasonable description of the heavy quarkonia.
Original language | English (US) |
---|---|
Article number | 016022 |
Journal | Physical Review D |
Volume | 96 |
Issue number | 1 |
DOIs | |
State | Published - Jul 1 2017 |
Bibliographical note
Publisher Copyright:© 2017 American Physical Society.