Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia

Research output: Contribution to journalArticle

Abstract

The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5—2-Methyl-6-(phenylethynyl)pyridine (MPEP)—on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.

Original languageEnglish (US)
Article numbere22069
JournalSynapse
Volume73
Issue number1
DOIs
StatePublished - Jan 1 2019

Fingerprint

Subcellular Fractions
Prosencephalon
Knockout Mice
Intellectual Disability
Proteomics
Schizophrenia
ras Proteins
Proteins
Excitatory Amino Acid Transporter 2
Heterogeneous-Nuclear Ribonucleoproteins
GAP-43 Protein
Fragile X Syndrome
Rough Endoplasmic Reticulum
Cyclic Nucleotides
Phosphoric Diester Hydrolases
Autistic Disorder
Tandem Mass Spectrometry
Inbred C57BL Mouse
Liquid Chromatography
Biomarkers

Keywords

  • FMRP
  • FXS
  • MPEP
  • autism
  • brain
  • mGluR5
  • schizophrenia

PubMed: MeSH publication types

  • Journal Article

Cite this

@article{a3742178095549518334085495d4c250,
title = "Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia",
abstract = "The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5—2-Methyl-6-(phenylethynyl)pyridine (MPEP)—on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.",
keywords = "FMRP, FXS, MPEP, autism, brain, mGluR5, schizophrenia",
author = "Folsom, {Timothy D.} and LeeAnn Higgins and Markowski, {Todd W.} and Griffin, {Timothy J} and Fatemi, {S H}",
year = "2019",
month = "1",
day = "1",
doi = "10.1002/syn.22069",
language = "English (US)",
volume = "73",
journal = "Synapse",
issn = "0887-4476",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine

T2 - Relevance to developmental study of schizophrenia

AU - Folsom, Timothy D.

AU - Higgins, LeeAnn

AU - Markowski, Todd W.

AU - Griffin, Timothy J

AU - Fatemi, S H

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5—2-Methyl-6-(phenylethynyl)pyridine (MPEP)—on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.

AB - The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5—2-Methyl-6-(phenylethynyl)pyridine (MPEP)—on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.

KW - FMRP

KW - FXS

KW - MPEP

KW - autism

KW - brain

KW - mGluR5

KW - schizophrenia

UR - http://www.scopus.com/inward/record.url?scp=85054405145&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054405145&partnerID=8YFLogxK

U2 - 10.1002/syn.22069

DO - 10.1002/syn.22069

M3 - Article

C2 - 30176067

AN - SCOPUS:85054405145

VL - 73

JO - Synapse

JF - Synapse

SN - 0887-4476

IS - 1

M1 - e22069

ER -