TY - JOUR
T1 - Quantitative Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry Analysis of Acrolein-DNA Adducts and Etheno-DNA Adducts in Oral Cells from Cigarette Smokers and Nonsmokers
AU - Paiano, Viviana
AU - Maertens, Laura
AU - Guidolin, Valeria
AU - Yang, Jing
AU - Balbo, Silvia
AU - Hecht, Stephen S.
N1 - Funding Information:
This study was supported by Grant P01-CA-138338 from the National Cancer Institute. Mass spectrometry was carried out in the Analytical Biochemistry Shared Resource of the Masonic Cancer Center, supported in part by Cancer Center Support Grant CA-077598.
Publisher Copyright:
© 2020 American Chemical Society.
PY - 2020/8/17
Y1 - 2020/8/17
N2 - Cigarette smoking is an important source of human exposure to toxicants and carcinogens and contributes significantly to cancer morbidity and mortality worldwide. Acrolein, a widespread environmental pollutant, is present in relatively high amounts in cigarette smoke and can react directly with DNA to form DNA adducts, which serve as important biomarkers for the assessment of exposure to acrolein and its potential role in smoking related cancer. Etheno-DNA adducts are promutagenic DNA lesions that can derive from exogenous chemicals as well as endogenous sources, including lipid peroxidation. In this study, we developed a combined method for the quantitation of (6R/S)-3-(2′-deoxyribos-1′-yl)-5,6,7,8,-tetrahydro-6-hydroxypyrimido[1,2-a]purine-10(3H)-one (α-OH-Acr-dGuo), (8R/S)-3-(2′-deoxyribos-1′-yl)-5,6,7,8,-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo), 1,N6-etheno-dAdo (ϵdAdo), and 3,N4-etheno-dCyd (ϵdCyd) adducts in oral rinse and cytobrush DNA from smokers and nonsmokers by liquid chromatography-nanoelelctrospray ionization-high-resolution tandem mass spectrometry (LC-NSI-HRMS/MS). For oral rinse samples, there was a statistically significant difference between the levels of α-OH-Acr-dGuo, γ-OH-Acr-dGuo, ϵdAdo, and ϵdCyd in smokers (12.1 ± 17.9, 163 ± 227, 182 ± 568, and 194 ± 400 adducts/109 nucleotides, respectively) and nonsmokers (1.85 ± 2.08, 5.95 ± 4.23, 7.69 ± 11.7, and 6.07 ± 10.9 adducts/109 nucleotides, respectively). For cytobrush samples, there was a statistically significant difference between the levels of γ-OH-Acr-dGuo and ϵdAdo in smokers (259 ± 540 and 82.9 ± 271 adducts/109 nucleotides, respectively) and nonsmokers (7.37 ± 5.09 and 16.2 ± 30.2 adducts/109 nucleotides, respectively) but not for α-OH-Acr-dGuo and ϵdCyd. Our results demonstrate that oral mucosa cells are an excellent source of material for evaluating DNA adducts to be used as biomarkers of tobacco smoke exposure and molecular changes potentially related to cancer.
AB - Cigarette smoking is an important source of human exposure to toxicants and carcinogens and contributes significantly to cancer morbidity and mortality worldwide. Acrolein, a widespread environmental pollutant, is present in relatively high amounts in cigarette smoke and can react directly with DNA to form DNA adducts, which serve as important biomarkers for the assessment of exposure to acrolein and its potential role in smoking related cancer. Etheno-DNA adducts are promutagenic DNA lesions that can derive from exogenous chemicals as well as endogenous sources, including lipid peroxidation. In this study, we developed a combined method for the quantitation of (6R/S)-3-(2′-deoxyribos-1′-yl)-5,6,7,8,-tetrahydro-6-hydroxypyrimido[1,2-a]purine-10(3H)-one (α-OH-Acr-dGuo), (8R/S)-3-(2′-deoxyribos-1′-yl)-5,6,7,8,-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo), 1,N6-etheno-dAdo (ϵdAdo), and 3,N4-etheno-dCyd (ϵdCyd) adducts in oral rinse and cytobrush DNA from smokers and nonsmokers by liquid chromatography-nanoelelctrospray ionization-high-resolution tandem mass spectrometry (LC-NSI-HRMS/MS). For oral rinse samples, there was a statistically significant difference between the levels of α-OH-Acr-dGuo, γ-OH-Acr-dGuo, ϵdAdo, and ϵdCyd in smokers (12.1 ± 17.9, 163 ± 227, 182 ± 568, and 194 ± 400 adducts/109 nucleotides, respectively) and nonsmokers (1.85 ± 2.08, 5.95 ± 4.23, 7.69 ± 11.7, and 6.07 ± 10.9 adducts/109 nucleotides, respectively). For cytobrush samples, there was a statistically significant difference between the levels of γ-OH-Acr-dGuo and ϵdAdo in smokers (259 ± 540 and 82.9 ± 271 adducts/109 nucleotides, respectively) and nonsmokers (7.37 ± 5.09 and 16.2 ± 30.2 adducts/109 nucleotides, respectively) but not for α-OH-Acr-dGuo and ϵdCyd. Our results demonstrate that oral mucosa cells are an excellent source of material for evaluating DNA adducts to be used as biomarkers of tobacco smoke exposure and molecular changes potentially related to cancer.
UR - http://www.scopus.com/inward/record.url?scp=85089707766&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089707766&partnerID=8YFLogxK
U2 - 10.1021/acs.chemrestox.0c00223
DO - 10.1021/acs.chemrestox.0c00223
M3 - Article
C2 - 32635726
AN - SCOPUS:85089707766
SN - 0893-228X
VL - 33
SP - 2197
EP - 2207
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 8
ER -