Quantitative determination of metamorphic reaction history: mass balance relations between groundmass and mineral inclusion assemblages in metamorphic rocks

Donna L. Whitney, Helen M. Lang, Edward D. Ghent

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Qualitative and quantitative information about metamorphic reaction history and PT paths may be obtained from mineral inclusions in garnet by comparing the mineralogy, distribution, and compositions of paragenetically-related inclusions with minerals in the groundmass assemblage. Using the algebraic technique of singular value decomposition (SVD), we document mass balance relations between inclusion and groundmass assemblages in metapelitic rocks from two metamorphic terranes that experienced different peak metamorphic conditions, and whose transition from inclusion to groundmass assemblage records different PT path segments relative to peak conditions. We calculate mass balances relating an inclusion assemblage consisting in part of armored relics of chloritoid to groundmass mineral assemblages in a kyanite-staurolite mica schist from the Solitude Range, British Columbia, and an inclusion assemblage of kyanite, staurolite, and rutile to groundmass minerals in a sillimanite-cordierite gneiss from the Skagit Gneiss, North Cascade Range, Washington. Mass balances for each rock are consistent with reaction histories inferred from petrographic observations. In the Solitude Range schist, the results of mass balance calculations are consistent with the growth of staurolite and garnet at the expense of chloritoid during prograde metamorphism and suggest that chlorite, although not preserved as an inclusion, was involved in initial staurolite growth. In the Skagit sillimanite gneiss, mass balance relations exist between the inclusion suite, which formed during high pressure metamorphism, and the associated groundmass assemblage, which equilibrated at high temperature but much lower pressure. Mass balance does not exist between the groundmass of the Skagit sillimanite gneiss and the groundmass of a nearby kyanite-staurolite schist that has been proposed as a possible lower-grade equivalent of the sillimanite-bearing rocks. These results indicate that, although compositional modification and selective preservation of minerals must be taken into account, mineral inclusion suites may nevertheless preserve enough compositional information to allow reconstruction of complete or nearly complete pre-existing assemblages. This information may not be retrievable from any other source if no lower-grade equivalents of the rocks of interest are exposed.

Original languageEnglish (US)
Pages (from-to)404-411
Number of pages8
JournalContributions to Mineralogy and Petrology
Volume120
Issue number3-4
DOIs
StatePublished - Jul 1995

Fingerprint

Dive into the research topics of 'Quantitative determination of metamorphic reaction history: mass balance relations between groundmass and mineral inclusion assemblages in metamorphic rocks'. Together they form a unique fingerprint.

Cite this