TY - JOUR
T1 - Quantitative analysis of the oxidative DNA lesion, 2,2-diamino-4-(2-deoxy-β-D-erythropentofuranosyl) amino]-5(2H)-oxazolone (oxazolone), in vitro and in vivo by isotope dilution-capillary HPLC-ESI-MS/MS
AU - Matter, Brock
AU - Malejka-Giganti, Danuta
AU - Csallany, A S
AU - Tretyakova, Natalia Y
PY - 2006/11
Y1 - 2006/11
N2 - A major DNA oxidation product, 2,2-diamino-4-[(2-deoxy-β-D-erythro- pentofuranosyl)amino]-5(2 H)-oxazolone (oxazolone), can be generated either directly by oxidation of dG or as a secondary oxidation product with an intermediate of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG). Site-specific mutagenesis studies indicate that oxazolone is a strongly mispairing lesion, inducing ∼10-fold more mutations than 8-oxo-dG. While 8-oxo-dG undergoes facile further oxidation, oxazolone appears to be a stable final product of guanine oxidation, and, if formed in vivo, can potentially serve as a biomarker of DNA damage induced by oxidative stress. In this study, capillary liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) methods were developed to enable quantitative analysis of both 8-oxo-dG and oxazolone in DNA from biological sources. Sensitive and specific detection of 8-oxo-dG and oxazolone in enzymatic DNA hydrolysates was achieved by isotope dilution with the corresponding 15N-labeled internal standards. Both nucleobase adducts were formed in a dose-dependent manner in calf thymus DNA subjected to photooxidation in the presence of riboflavin. While the amounts of oxazolone continued to increase with the duration of irradiation, those of 8-oxo-dG reached a maximum at 20 min, suggesting that 8-oxo-dG is converted to secondary oxidation products. Both lesions were found in rat liver DNA isolated under carefully monitored conditions to minimize artifactual oxidation. Liver DNA of diabetic and control rats maintained on a diet high in animal fat contained 2-6 molecules of oxazolone per 107 guanines, while 8-oxo-dG amounts in the same samples were between 3 and 8 adducts per 106 guanines. The formation of oxazolone lesions in rat liver DNA, their relative stability in the presence of oxidants and their potent mispairing characteristics suggest that oxazolone may play a role in oxidative stress-mediated mutagenesis.
AB - A major DNA oxidation product, 2,2-diamino-4-[(2-deoxy-β-D-erythro- pentofuranosyl)amino]-5(2 H)-oxazolone (oxazolone), can be generated either directly by oxidation of dG or as a secondary oxidation product with an intermediate of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG). Site-specific mutagenesis studies indicate that oxazolone is a strongly mispairing lesion, inducing ∼10-fold more mutations than 8-oxo-dG. While 8-oxo-dG undergoes facile further oxidation, oxazolone appears to be a stable final product of guanine oxidation, and, if formed in vivo, can potentially serve as a biomarker of DNA damage induced by oxidative stress. In this study, capillary liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) methods were developed to enable quantitative analysis of both 8-oxo-dG and oxazolone in DNA from biological sources. Sensitive and specific detection of 8-oxo-dG and oxazolone in enzymatic DNA hydrolysates was achieved by isotope dilution with the corresponding 15N-labeled internal standards. Both nucleobase adducts were formed in a dose-dependent manner in calf thymus DNA subjected to photooxidation in the presence of riboflavin. While the amounts of oxazolone continued to increase with the duration of irradiation, those of 8-oxo-dG reached a maximum at 20 min, suggesting that 8-oxo-dG is converted to secondary oxidation products. Both lesions were found in rat liver DNA isolated under carefully monitored conditions to minimize artifactual oxidation. Liver DNA of diabetic and control rats maintained on a diet high in animal fat contained 2-6 molecules of oxazolone per 107 guanines, while 8-oxo-dG amounts in the same samples were between 3 and 8 adducts per 106 guanines. The formation of oxazolone lesions in rat liver DNA, their relative stability in the presence of oxidants and their potent mispairing characteristics suggest that oxazolone may play a role in oxidative stress-mediated mutagenesis.
UR - http://www.scopus.com/inward/record.url?scp=33751008084&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751008084&partnerID=8YFLogxK
U2 - 10.1093/nar/gkl596
DO - 10.1093/nar/gkl596
M3 - Article
C2 - 17020926
AN - SCOPUS:33751008084
SN - 0305-1048
VL - 34
SP - 5449
EP - 5460
JO - Nucleic acids research
JF - Nucleic acids research
IS - 19
ER -