Quantitation of pyridyloxobutyl DNA adducts in nasal and oral mucosa of rats treated chronically with enantiomers of N′-nitrosonornicotine

Siyi Zhang, Mingyao Wang, Peter W. Villalta, Bruce R. Lindgren, Yanbin Lao, Stephen S. Hecht

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


N′-Nitrosonornicotine (NNN) is one of the most important strong carcinogens in tobacco products and is believed to play a significant role in the induction of esophageal cancer in smokers and oral cavity cancer in snuff dippers. NNN is metabolically activated through cytochrome P450-catalyzed α-hydroxylation. 2′-Hydroxylation produces a reactive intermediate 4-(3-pyridyl)-4-oxobutanediazohydroxide (7), which alkylates DNA to form pyridyloxobutyl (POB)-DNA adducts. DNA pyridyloxobutylation from NNN treatment, as measured by released 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB, 8), has been observed in vitro and in vivo. In the present study, we have used liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) to analyze specific POB-DNA adducts in the nasal olfactory, nasal respiratory, and oral mucosa of F344 rats treated chronically with (R)-NNN or (S)-NNN in the drinking water (10 ppm, 1-20 weeks). Adduct levels in the nasal respiratory mucosa exceeded those in the nasal olfactory and oral mucosa. (R)-NNN treatment generated 2-4 times more adducts in the nasal olfactory and respiratory mucosa than did (S)-NNN at most time points. O2-[4-(3-Pyridyl)-4-oxobut-1- yl]thymidine (O2-POB-dThd, 11) predominated in the nasal olfactory and respiratory mucosa, followed by 7-[4-(3-pyridyl)-4-oxobut-1-yl]guanine (7-POB-Gua, 14). Levels of O2-[4-(3-pyridyl)-4-oxobut-1-yl]cytosine (O2-POB-Cyt, 13) and O6-[4-(3-pyridyl)-4-oxobut-1-yl]- 2′-deoxyguanosine (O6-POB-dGuo, 12) were significantly lower. In the oral mucosa, the opposite stereoselectivity was observed, with (S)-NNN treatment producing 3-5 times more POB-DNA adducts than did (R)-NNN. O 2-POBdThd and 7-POB-dGuo were the two major adducts, and their levels were similar. Overall, POB-DNA adduct formation in the nasal olfactory and nasal respiratory mucosa was similar to that previously observed in the lung, whereas in the oral mucosa, the trend resembled that in the esophagus. These results indicate that different mechanisms are involved in NNN metabolism and tumorigenesis in rat nasal and oral tissues. NNN enters the nasal mucosa through the circulation, and tissue-specific metabolism is important, while in the oral mucosa, direct exposure and local activation both play significant roles. Our results also support the potential importance of NNN as an oral carcinogen in people who use smokeless tobacco products.

Original languageEnglish (US)
Pages (from-to)949-956
Number of pages8
JournalChemical research in toxicology
Issue number5
StatePublished - May 18 2009


Dive into the research topics of 'Quantitation of pyridyloxobutyl DNA adducts in nasal and oral mucosa of rats treated chronically with enantiomers of N′-nitrosonornicotine'. Together they form a unique fingerprint.

Cite this