Quadratic B-mode (QB-Mode) ultrasonic imaging with coded transmit waveforms

Daniele Cecchini, Yao Hui, Pornchai Phukpattaranont, Emad S Ebbini

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In this paper, the use of coded transmit waveforms with post-beamforming nonlinear filtering of echo data in diagnostic ultrasound is presented. The nonlinear filter based on the second-order Volterra filter (SoVF) model separates the linear and quadratic echo components. The grayscale representation of the latter results in a new mode of imaging we refer to as quadratic B-mode (QB-mode). The use of chirp transmit waveforms in imaging contrast agents allows for nonlinear excitation of microbubble contrast agents (UCA) at a range of frequencies throughout the bandwidth of the transducer. The QB-mode image is shown to produce significant increase in UCA contrast over standard B-mode images from conventional and chirp excitation with and without compression. This contrast enhancement is achieved without loss in spatial resolution.

Original languageEnglish (US)
Title of host publicationProceedings of the 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
Pages7417-7420
Number of pages4
StatePublished - Dec 1 2005
Event2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005 - Shanghai, China
Duration: Sep 1 2005Sep 4 2005

Publication series

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume7 VOLS
ISSN (Print)0589-1019

Other

Other2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
CountryChina
CityShanghai
Period9/1/059/4/05

Keywords

  • Beamforming
  • Contrast agents
  • Contrast enhancement
  • Volterra filter

Fingerprint Dive into the research topics of 'Quadratic B-mode (QB-Mode) ultrasonic imaging with coded transmit waveforms'. Together they form a unique fingerprint.

Cite this