TY - JOUR
T1 - QRS complex detection and measurement algorithms for multichannel ECGs in cardiac resynchronization therapy patients
AU - Curtin, Antonia E.
AU - Burns, Kevin V.
AU - Bank, Alan J.
AU - Netoff, Theoden I.
N1 - Funding Information:
This work was supported by the Medtronic External Research Program, Medtronic plc.
Publisher Copyright:
© 2013 IEEE.
PY - 2018/6/5
Y1 - 2018/6/5
N2 - We developed an automated approach for QRS complex detection and QRS duration (QRSd) measurement that can effectively analyze multichannel electrocardiograms (MECGs) acquired during abnormal conduction and pacing in heart failure and cardiac resynchronization therapy (CRT) patients to enable the use of MECGs to characterize cardiac activation in such patients. The algorithms use MECGs acquired with a custom 53-electrode investigational body surface mapping system and were validated using previously collected data from 58 CRT patients. An expert cohort analyzed the same data to determine algorithm accuracy and error. The algorithms: 1) detect QRS complexes; 2) identify complexes of the most prevalent morphology and morphologic outliers; and 3) determine the array-specific (i.e., anterior and posterior) and global QRS complex onsets, offsets, and durations for the detected complexes. The QRS complex detection algorithm had a positive predictivity and sensitivity of ≥96% for complex detection and classification. The absolute QRSd error was 17 ± 14 ms, or 12%, for array-specific QRSd and 12 ± 10 ms, or 8%, for global QRSd. The absolute global QRSd error (12 ms) was less than the interobserver variation in that measurement (15 ± 10 ms). The sensitivity, positive predictivity, and error of the algorithms were similar to the values reported for current state-of-the-art algorithms designed for and limited to simpler data sets and conduction patterns and within the variation found in clinical 12-lead ECG QRSd measurement techniques. These new algorithms permit accurate, real-time analysis of QRS complex features in MECGs in patients with conduction disorders and/or pacing.
AB - We developed an automated approach for QRS complex detection and QRS duration (QRSd) measurement that can effectively analyze multichannel electrocardiograms (MECGs) acquired during abnormal conduction and pacing in heart failure and cardiac resynchronization therapy (CRT) patients to enable the use of MECGs to characterize cardiac activation in such patients. The algorithms use MECGs acquired with a custom 53-electrode investigational body surface mapping system and were validated using previously collected data from 58 CRT patients. An expert cohort analyzed the same data to determine algorithm accuracy and error. The algorithms: 1) detect QRS complexes; 2) identify complexes of the most prevalent morphology and morphologic outliers; and 3) determine the array-specific (i.e., anterior and posterior) and global QRS complex onsets, offsets, and durations for the detected complexes. The QRS complex detection algorithm had a positive predictivity and sensitivity of ≥96% for complex detection and classification. The absolute QRSd error was 17 ± 14 ms, or 12%, for array-specific QRSd and 12 ± 10 ms, or 8%, for global QRSd. The absolute global QRSd error (12 ms) was less than the interobserver variation in that measurement (15 ± 10 ms). The sensitivity, positive predictivity, and error of the algorithms were similar to the values reported for current state-of-the-art algorithms designed for and limited to simpler data sets and conduction patterns and within the variation found in clinical 12-lead ECG QRSd measurement techniques. These new algorithms permit accurate, real-time analysis of QRS complex features in MECGs in patients with conduction disorders and/or pacing.
KW - Biomedical signal processing
KW - classification algorithms
KW - detection algorithms
KW - electrocardiology
UR - http://www.scopus.com/inward/record.url?scp=85048182486&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048182486&partnerID=8YFLogxK
U2 - 10.1109/JTEHM.2018.2844195
DO - 10.1109/JTEHM.2018.2844195
M3 - Article
C2 - 30443440
AN - SCOPUS:85048182486
SN - 2168-2372
VL - 6
JO - IEEE Journal of Translational Engineering in Health and Medicine
JF - IEEE Journal of Translational Engineering in Health and Medicine
M1 - 8372976
ER -