Protein stabilization

Vishard Ragoonanan, Alptekin Aksan

Research output: Contribution to journalReview articlepeer-review

38 Scopus citations


The need for efficient and safe stabilization procedures for biomaterials, therapeutic proteins, and cells is increasing with advances in medicine and pharmaceutics. Stabilization of a protein translates into preservation of the protein structure during storage, in thermodynamic equilibrium with its surroundings. Here, we present a review of the basic thermodynamic principles that govern the protein structural transitions and the interactions of the protein with its surroundings. Specifically, the roles of pressure, temperature, solvent mobility, and solute concentration are discussed. Various methods that can be used to measure protein structure and function, and also the currently available stabilization methods are reviewed. We also introduce a new and promising stabilization method, nanoencapsulation. Similar to the stabilization mechanism of osmolytes, in nanoencapsulation the water activity is altered, affecting the molecular motions of the proteins. There are several distinct advantages of nanoencapsulation, which may also open the way to successful stabilization of biomaterials for bioreactive coatings, biosensors, and biocatalysts.

Original languageEnglish (US)
Pages (from-to)246-252
Number of pages7
JournalTransfusion Medicine and Hemotherapy
Issue number4
StatePublished - Aug 2007


  • Biostabilization
  • Biothermodynamics
  • Protein stability


Dive into the research topics of 'Protein stabilization'. Together they form a unique fingerprint.

Cite this