TY - JOUR
T1 - Protein-polymer conjugation via ligand affinity and photoactivation of glutathione s-transferase
AU - Lin, En Wei
AU - Boehnke, Natalie
AU - Maynard, Heather D.
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/10/15
Y1 - 2014/10/15
N2 - A photoactivated, site-selective conjugation of poly(ethylene glycol) (PEG) to the glutathione (GSH) binding pocket of glutathione S-transferase (GST) is described. To achieve this, a GSH analogue (GSH-BP) was designed and chemically synthesized with three functionalities: (1) the binding affinity of GSH to GST, (2) a free thiol for polymer functionalization, and (3) a photoreactive benzophenone (BP) component. Different molecular weights (2 kDa, 5 kDa, and 20 kDa) of GSH-BP modified PEGs (GSBP-PEGs) were synthesized and showed conjugation efficiencies between 52% and 76% to GST. Diazirine (DA) PEG were also prepared but gave conjugation yields lower than for GSBP-PEGs. PEGs with different end-groups were also synthesized to validate the importance of each component in the end-group design. End-groups included glutathione (GS-PEG) and benzophenone (BP-PEG). Results showed that both GSH and BP were crucial for successful conjugation to GST. In addition, conjugations of 5 kDa GSBP-PEG to different proteins were investigated, including bovine serum albumin (BSA), lysozyme (Lyz), ubiquitin (Ubq), and GST-fused ubiquitin (GST-Ubq) to ensure specific binding to GST. By combining noncovalent and covalent interactions, we have developed a new phototriggered protein-polymer conjugation method that is generally applicable to GST-fusion proteins.
AB - A photoactivated, site-selective conjugation of poly(ethylene glycol) (PEG) to the glutathione (GSH) binding pocket of glutathione S-transferase (GST) is described. To achieve this, a GSH analogue (GSH-BP) was designed and chemically synthesized with three functionalities: (1) the binding affinity of GSH to GST, (2) a free thiol for polymer functionalization, and (3) a photoreactive benzophenone (BP) component. Different molecular weights (2 kDa, 5 kDa, and 20 kDa) of GSH-BP modified PEGs (GSBP-PEGs) were synthesized and showed conjugation efficiencies between 52% and 76% to GST. Diazirine (DA) PEG were also prepared but gave conjugation yields lower than for GSBP-PEGs. PEGs with different end-groups were also synthesized to validate the importance of each component in the end-group design. End-groups included glutathione (GS-PEG) and benzophenone (BP-PEG). Results showed that both GSH and BP were crucial for successful conjugation to GST. In addition, conjugations of 5 kDa GSBP-PEG to different proteins were investigated, including bovine serum albumin (BSA), lysozyme (Lyz), ubiquitin (Ubq), and GST-fused ubiquitin (GST-Ubq) to ensure specific binding to GST. By combining noncovalent and covalent interactions, we have developed a new phototriggered protein-polymer conjugation method that is generally applicable to GST-fusion proteins.
UR - http://www.scopus.com/inward/record.url?scp=84908038130&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908038130&partnerID=8YFLogxK
U2 - 10.1021/bc500380r
DO - 10.1021/bc500380r
M3 - Article
C2 - 25315970
AN - SCOPUS:84908038130
SN - 1043-1802
VL - 25
SP - 1902
EP - 1909
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
IS - 10
ER -