TY - JOUR
T1 - Proof of a monotonicity conjecture
AU - Prellberg, Thomas
AU - Stanton, D.
N1 - Funding Information:
Research partially supported by NSF Grant DMS-0203282.
PY - 2003/8
Y1 - 2003/8
N2 - If pk(P) is the number of integer partitions of k≥1 whose parts lie in P, it is shown that pk (P) is an increasing function of k for P = {n, n + 1, ..., 2n - 1}, where n ≥, 3 is odd. This completes the classification of all such monotonic P with min (P) ≠ 2, 3, or 5.
AB - If pk(P) is the number of integer partitions of k≥1 whose parts lie in P, it is shown that pk (P) is an increasing function of k for P = {n, n + 1, ..., 2n - 1}, where n ≥, 3 is odd. This completes the classification of all such monotonic P with min (P) ≠ 2, 3, or 5.
UR - http://www.scopus.com/inward/record.url?scp=0042352676&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042352676&partnerID=8YFLogxK
U2 - 10.1016/S0097-3165(03)00056-6
DO - 10.1016/S0097-3165(03)00056-6
M3 - Article
AN - SCOPUS:0042352676
SN - 0097-3165
VL - 103
SP - 377
EP - 381
JO - Journal of Combinatorial Theory. Series A
JF - Journal of Combinatorial Theory. Series A
IS - 2
ER -