TY - JOUR

T1 - Proof of a monotonicity conjecture

AU - Prellberg, Thomas

AU - Stanton, D.

N1 - Funding Information:
Research partially supported by NSF Grant DMS-0203282.

PY - 2003/8

Y1 - 2003/8

N2 - If pk(P) is the number of integer partitions of k≥1 whose parts lie in P, it is shown that pk (P) is an increasing function of k for P = {n, n + 1, ..., 2n - 1}, where n ≥, 3 is odd. This completes the classification of all such monotonic P with min (P) ≠ 2, 3, or 5.

AB - If pk(P) is the number of integer partitions of k≥1 whose parts lie in P, it is shown that pk (P) is an increasing function of k for P = {n, n + 1, ..., 2n - 1}, where n ≥, 3 is odd. This completes the classification of all such monotonic P with min (P) ≠ 2, 3, or 5.

UR - http://www.scopus.com/inward/record.url?scp=0042352676&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0042352676&partnerID=8YFLogxK

U2 - 10.1016/S0097-3165(03)00056-6

DO - 10.1016/S0097-3165(03)00056-6

M3 - Article

AN - SCOPUS:0042352676

SN - 0097-3165

VL - 103

SP - 377

EP - 381

JO - Journal of Combinatorial Theory. Series A

JF - Journal of Combinatorial Theory. Series A

IS - 2

ER -