Abstract
Programmable gene integration in human cells has the potential to enable mutation-agnostic treatments for loss-of-function genetic diseases and facilitate many applications in the life sciences. CRISPR-associated transposases (CASTs) catalyze RNA-guided DNA integration but thus far demonstrate minimal activity in human cells. Using phage-assisted continuous evolution (PACE), we generated CAST variants with >200-fold average improved integration activity. The evolved CAST system (evoCAST) achieves ~10 to 30% integration efficiencies of kilobase-size DNA cargoes in human cells across 14 tested genomic target sites, including safe harbor loci, sites used for immunotherapy, and genes implicated in loss-of-function diseases, with undetected indels and low levels of off-target integration. Collectively, our findings establish a platform for the laboratory evolution of CASTs and advance a versatile system for programmable gene integration in living systems.
Original language | English (US) |
---|---|
Article number | eadt5199 |
Journal | Science |
Volume | 388 |
Issue number | 6748 |
DOIs | |
State | Published - May 15 2025 |
Bibliographical note
Publisher Copyright:Copyright © 2025 the authors, some rights reserved.
PubMed: MeSH publication types
- Journal Article