Programmable catalysis by support polarization: elucidating and breaking scaling relations

Seongjoo Jung, Cristina Pizzolitto, Pierdomenico Biasi, Paul J. Dauenhauer, Turan Birol

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The Sabatier principle and the scaling relations have been widely used to search for and screen new catalysts in the field of catalysis. However, these powerful tools can also serve as limitations of catalyst control and breakthrough. To overcome this challenge, this work proposes an efficient method of studying catalyst control by support polarization from first-principles. The results demonstrate that the properties of catalysts are determined by support polarization, irrespective of the magnitude of spontaneous polarization of support. The approach enables elucidating the scaling relations between binding energies at various polarization values of support. Moreover, we observe the breakdown of scaling relations for the surface controlled by support polarization. By studying the surface electronic structure and decomposing the induced charge into contributions from different atoms and orbitals, we identify the inherent structural property of the interface that leads to the breaking of the scaling relations. Specifically, the displacements of the underlying oxide support impose its symmetry on the catalyst, causing the scaling relations between different adsorption sites to break.

Original languageEnglish (US)
Article number7795
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Programmable catalysis by support polarization: elucidating and breaking scaling relations'. Together they form a unique fingerprint.

Cite this