Processing complexity increases in superficial layers of human primary auditory cortex

Michelle Moerel, Federico De Martino, Kâmil Uğurbil, Essa Yacoub, Elia Formisano

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


The layers of the neocortex each have a unique anatomical connectivity and functional role. Their exploration in the human brain, however, has been severely restricted by the limited spatial resolution of non-invasive measurement techniques. Here, we exploit the sensitivity and specificity of ultra-high field fMRI at 7 Tesla to investigate responses to natural sounds at deep, middle, and superficial cortical depths of the human auditory cortex. Specifically, we compare the performance of computational models that represent different hypotheses on sound processing inside and outside the primary auditory cortex (PAC). We observe that while BOLD responses in deep and middle PAC layers are equally well represented by a simple frequency model and a more complex spectrotemporal modulation model, responses in superficial PAC are better represented by the more complex model. This indicates an increase in processing complexity in superficial PAC, which remains present throughout cortical depths in the non-primary auditory cortex. These results suggest that a relevant transformation in sound processing takes place between the thalamo-recipient middle PAC layers and superficial PAC. This transformation may be a first computational step towards sound abstraction and perception, serving to form an increasingly more complex representation of the physical input.

Original languageEnglish (US)
Article number5502
JournalScientific reports
Issue number1
StatePublished - Dec 1 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).


Dive into the research topics of 'Processing complexity increases in superficial layers of human primary auditory cortex'. Together they form a unique fingerprint.

Cite this