Process oriented guided inquiry learning (POGIL®) marginally effects student achievement measures but substantially increases the odds of passing a course

Lindsey Walker, Abdi Warfa

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

While the inquiry approach to science teaching has been widely recommended as an epistemic mechanism to promote deep content understanding, there is also increased expectation that process and other transferable skills should be integral part of science pedagogy. To test the hypothesis that coupling process skills to content teaching impacts academic success measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides opportunities for improving process skills during content learning through guided-inquiry activities, to standard lecture conditions. Based on conventional measures of class performance, POGIL had a small effect on achievement outcomes (effect size = 0.29, [95% CI = 0.15–0.43]) but substantially improved the odds of passing a class (odds ratio = 2.02, [95% CI: 1.45–2.83]). That is, participants in the POGIL pedagogy had higher odds of passing a course and roughly performed 0.3 standard deviations higher on achievement measures than participants in standard lectures. In relative risk terms, POGIL reduced the risk of failing a course by 38%. These findings suggest providing opportunities to improve process skills during class instruction does not inhibit content learning but enhances conventional success measures. We compare these findings with those of recent large meta-analysis that examined the effects of global active learning methods on achievement outcomes and course failure rates in science, technology, engineering, and mathematics (STEM) fields.

Original languageEnglish (US)
Article numbere0186203
JournalPloS one
Volume12
Issue number10
DOIs
StatePublished - Oct 1 2017

Fingerprint

academic achievement
Teaching
learning
Learning
Students
Problem-Based Learning
Mathematics
relative risk
Meta-Analysis
meta-analysis
odds ratio
Odds Ratio
engineering
students
Technology
STEM (science, technology, engineering and mathematics)

Cite this

@article{808fe05f80f341b5a79559da41371f77,
title = "Process oriented guided inquiry learning (POGIL{\circledR}) marginally effects student achievement measures but substantially increases the odds of passing a course",
abstract = "While the inquiry approach to science teaching has been widely recommended as an epistemic mechanism to promote deep content understanding, there is also increased expectation that process and other transferable skills should be integral part of science pedagogy. To test the hypothesis that coupling process skills to content teaching impacts academic success measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides opportunities for improving process skills during content learning through guided-inquiry activities, to standard lecture conditions. Based on conventional measures of class performance, POGIL had a small effect on achievement outcomes (effect size = 0.29, [95{\%} CI = 0.15–0.43]) but substantially improved the odds of passing a class (odds ratio = 2.02, [95{\%} CI: 1.45–2.83]). That is, participants in the POGIL pedagogy had higher odds of passing a course and roughly performed 0.3 standard deviations higher on achievement measures than participants in standard lectures. In relative risk terms, POGIL reduced the risk of failing a course by 38{\%}. These findings suggest providing opportunities to improve process skills during class instruction does not inhibit content learning but enhances conventional success measures. We compare these findings with those of recent large meta-analysis that examined the effects of global active learning methods on achievement outcomes and course failure rates in science, technology, engineering, and mathematics (STEM) fields.",
author = "Lindsey Walker and Abdi Warfa",
year = "2017",
month = "10",
day = "1",
doi = "10.1371/journal.pone.0186203",
language = "English (US)",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Process oriented guided inquiry learning (POGIL®) marginally effects student achievement measures but substantially increases the odds of passing a course

AU - Walker, Lindsey

AU - Warfa, Abdi

PY - 2017/10/1

Y1 - 2017/10/1

N2 - While the inquiry approach to science teaching has been widely recommended as an epistemic mechanism to promote deep content understanding, there is also increased expectation that process and other transferable skills should be integral part of science pedagogy. To test the hypothesis that coupling process skills to content teaching impacts academic success measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides opportunities for improving process skills during content learning through guided-inquiry activities, to standard lecture conditions. Based on conventional measures of class performance, POGIL had a small effect on achievement outcomes (effect size = 0.29, [95% CI = 0.15–0.43]) but substantially improved the odds of passing a class (odds ratio = 2.02, [95% CI: 1.45–2.83]). That is, participants in the POGIL pedagogy had higher odds of passing a course and roughly performed 0.3 standard deviations higher on achievement measures than participants in standard lectures. In relative risk terms, POGIL reduced the risk of failing a course by 38%. These findings suggest providing opportunities to improve process skills during class instruction does not inhibit content learning but enhances conventional success measures. We compare these findings with those of recent large meta-analysis that examined the effects of global active learning methods on achievement outcomes and course failure rates in science, technology, engineering, and mathematics (STEM) fields.

AB - While the inquiry approach to science teaching has been widely recommended as an epistemic mechanism to promote deep content understanding, there is also increased expectation that process and other transferable skills should be integral part of science pedagogy. To test the hypothesis that coupling process skills to content teaching impacts academic success measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides opportunities for improving process skills during content learning through guided-inquiry activities, to standard lecture conditions. Based on conventional measures of class performance, POGIL had a small effect on achievement outcomes (effect size = 0.29, [95% CI = 0.15–0.43]) but substantially improved the odds of passing a class (odds ratio = 2.02, [95% CI: 1.45–2.83]). That is, participants in the POGIL pedagogy had higher odds of passing a course and roughly performed 0.3 standard deviations higher on achievement measures than participants in standard lectures. In relative risk terms, POGIL reduced the risk of failing a course by 38%. These findings suggest providing opportunities to improve process skills during class instruction does not inhibit content learning but enhances conventional success measures. We compare these findings with those of recent large meta-analysis that examined the effects of global active learning methods on achievement outcomes and course failure rates in science, technology, engineering, and mathematics (STEM) fields.

UR - http://www.scopus.com/inward/record.url?scp=85031087883&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85031087883&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0186203

DO - 10.1371/journal.pone.0186203

M3 - Article

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e0186203

ER -