Process Design and Economic Analysis of Renewable Isoprene from Biomass via Mesaconic Acid

Daniel J. Lundberg, David J. Lundberg, Kechun Zhang, Paul J Dauenhauer

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Combined fermentation and thermocatalytic conversion of biomass to isoprene comprises a hybrid process to provide the key monomer in the manufacturing of renewable synthetic rubber. In this work, design and economic evaluation of a chemical process considers the three-step process chemistry: (a) fermentation of glucose to either mesaconic or itaconic acid, (b) catalytic hydrodeoxygenation of mesaconic or itaconic acid to 3-methyl-tetrahydrofuran, and (c) catalytic dehydra-decyclization of 3-methyl-tetrahydrofuran to isoprene. Detailed reaction and separation systems were designed to maximize catalytic yield to isoprene and recover it with high purity. An economic sensitivity analysis identified hydrodeoxygenation and dehydra-decyclization catalytic selectivity as the critical opportunities for improving process economics. The process based on existing catalytic performance achieves a minimum sale price of isoprene (defined as the price which results in a project net present value of zero) of $4.07 kg -1 ($1.85 lb m -1 ) at a scale of 100,000 t yr -1 of mesaconic acid purchased at $1.00 kg -1 . Six process enhancements based on improved future catalytic technology are considered, with several scenarios achieving a minimum sale price of isoprene below $2.50 kg -1 ($1.13 lb m -1 ).

Original languageEnglish (US)
Pages (from-to)5576-5586
Number of pages11
JournalACS Sustainable Chemistry and Engineering
Volume7
Issue number5
DOIs
StatePublished - Mar 4 2019

Bibliographical note

Publisher Copyright:
© 2019 American Chemical Society.

Keywords

  • Dehydration
  • Hydrogenation
  • Isoprene
  • Itaconic acid
  • Mesaconic acid
  • Process design
  • Techno-economic

Fingerprint

Dive into the research topics of 'Process Design and Economic Analysis of Renewable Isoprene from Biomass via Mesaconic Acid'. Together they form a unique fingerprint.

Cite this