TY - JOUR
T1 - Probing new physics with underground accelerators and radioactive sources
AU - Izaguirre, Eder
AU - Krnjaic, Gordan
AU - Pospelov, Maxim
PY - 2015/1/5
Y1 - 2015/1/5
N2 - New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g. Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars ϕ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the 0+ excited state of 16O populated via a (p, α) reaction on fluorine and from radioactive 144Ce decay where the scalar is produced in the de-excitation of 144Nd*, which occurs along the decay chain. Subsequent scattering on electrons, e(ϕ, γ)e, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental setup can cover new territory for masses 250 keV≤mϕ≤2me and couplings to protons and electrons, 10-11≤gegp≤10-7. This parameter space is motivated by explanations of the "proton charge radius puzzle", thus this strategy adds a viable new physics component to the neutrino and nuclear astrophysics programs at underground facilities.
AB - New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g. Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars ϕ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the 0+ excited state of 16O populated via a (p, α) reaction on fluorine and from radioactive 144Ce decay where the scalar is produced in the de-excitation of 144Nd*, which occurs along the decay chain. Subsequent scattering on electrons, e(ϕ, γ)e, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental setup can cover new territory for masses 250 keV≤mϕ≤2me and couplings to protons and electrons, 10-11≤gegp≤10-7. This parameter space is motivated by explanations of the "proton charge radius puzzle", thus this strategy adds a viable new physics component to the neutrino and nuclear astrophysics programs at underground facilities.
UR - http://www.scopus.com/inward/record.url?scp=84912016962&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84912016962&partnerID=8YFLogxK
U2 - 10.1016/j.physletb.2014.11.037
DO - 10.1016/j.physletb.2014.11.037
M3 - Article
AN - SCOPUS:84912016962
VL - 740
SP - 61
EP - 65
JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
SN - 0370-2693
ER -