Projects per year
Abstract
We combine state-of-the-art oxide epitaxial growth by hybrid molecular beam epitaxy with transport, x-ray photoemission, and surface diffraction, along with classical and first-principles quantum mechanical modeling to investigate the nuances of insulating layer formation in otherwise high-mobility homoepitaxial n-SrTiO3(001) films. Our analysis points to charge immobilization at the buried n-SrTiO3/undoped SrTiO3(001) interface as well as within the surface contamination layer resulting from air exposure as the drivers of electronic dead-layer formation. As Fermi level equilibration occurs at the surface and the buried interface, charge trapping reduces the sheet carrier density (n2D) and renders the n-STO film insulating if n2D falls below the critical value for the metal-to-insulator transition.
Original language | English (US) |
---|---|
Article number | 070903 |
Journal | APL Materials |
Volume | 10 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1 2022 |
Bibliographical note
Funding Information:Work at PNNL was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (Award No. 10122). WSS acknowledges support from the OSU-PNNL Graduate Fellowship. Work at UMN was supported by the U.S. Department of Energy (Grant No. DE-SC002021). Structural characterizations were carried out at the University of Minnesota Characterization Facility, which receives partial support from NSF through the MRSEC program (Award No. DMR-2011401). ZY acknowledges support from the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-21-1-0025). YH was supported by the Fine Theoretical Physics Institute of UMN. Modeling was done using the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231) using NERSC (Award No. BES-ERCAP0021800). This research used resources at the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory (Contract No. DE-AC02-06CH11357).
Publisher Copyright:
© 2022 Author(s).
MRSEC Support
- Shared
Fingerprint
Dive into the research topics of 'Probing electronic dead layers in homoepitaxial n -SrTiO3(001) films'. Together they form a unique fingerprint.Projects
- 2 Active
-
University of Minnesota Materials Research Science and Engineering Center (DMR-2011401)
Leighton, C. (PI) & Lodge, T. (CoI)
THE NATIONAL SCIENCE FOUNDATION
9/1/20 → 8/31/26
Project: Research project
-
IRG-1: Ionic Control of Materials
Leighton, C. (Leader), Birol, T. (Senior Investigator), Fernandes, R. M. (Senior Investigator), Frisbie, D. (Senior Investigator), Greven, M. (Senior Investigator), Jalan, B. (Senior Investigator), Mkhoyan, A. (Senior Investigator), Walter, J. (Senior Investigator) & Wang, X. (Senior Investigator)
9/1/20 → …
Project: Research project