Abstract
Dark matter particles can form halos gravitationally bound to massive astrophysical objects. The Earth could have such a halo where depending on the particle mass, the halo either extends beyond the surface or is confined to the Earth's interior. We consider the possibility that if dark matter particles are coupled to neutrinos, then neutrino oscillations can be used to probe an Earth dark matter halo. In particular, atmospheric neutrinos traversing the Earth can be sensitive to a small size, interior halo, inaccessible by other means. Depending on the halo mass and neutrino energy, constraints on the dark matter-neutrino couplings are obtained from the halo corrections to the neutrino oscillations.
Original language | English (US) |
---|---|
Article number | 095009 |
Journal | Physical Review D |
Volume | 108 |
Issue number | 9 |
DOIs | |
State | Published - Nov 1 2023 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.