Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response

M. Alexander Ardagh, Omar A. Abdelrahman, Paul J. Dauenhauer

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Acceleration of the catalytic transformation of molecules via heterogeneous materials occurs through design of active binding sites to optimally balance the requirements of all steps in a catalytic cycle. In accordance with the Sabatier principle, the characteristics of a single binding site are balanced between at least two transient phenomena, leading to maximum possible catalytic activity at a single, static condition (i.e., a "volcano curve" peak). In this work, a dynamic heterogeneous catalyst oscillating between two electronic states was evaluated via simulation, predicting catalytic activity as much as three-to-four orders of magnitude (1000-10â»000) above the Sabatier maximum. Surface substrate binding energies were varied by a given amplitude (0.1 < Î"U < 3.0 eV) over a broad range of frequencies (10-4 < f < 1011 s-1) in square, sinusoidal, sawtooth, and triangular waveforms to characterize surface dynamics impact on average catalytic turnover frequency. Catalytic systems were shown to exhibit order-of-magnitude dynamic rate enhancement at "surface resonance" defined as the band of frequencies (e.g., 103-107 s-1) where the applied surface waveform kinetics were comparable to kinetics of individual microkinetic chemical reaction steps. Key dynamic performance parameters are discussed regarding industrial catalytic chemistries and implementation in physical dynamic systems operating above kilohertz frequencies.

Original languageEnglish (US)
Pages (from-to)6929-6937
Number of pages9
JournalACS Catalysis
Volume9
Issue number8
DOIs
StatePublished - Aug 2 2019

Bibliographical note

Funding Information:
We acknowledge financial support of the Catalysis Center for Energy Innovation, a U.S. Department of Energy - Energy Frontier Research Center under Grant DE-SC0001004. The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources that contributed to the research results reported within this paper; URL: http://www.msi.umn.edu . We acknowledge helpful discussions with Professors Turon Birol, Dan Frisbie, Michael Tsapatsis, and Dionisios Vlachos.

Publisher Copyright:
© 2019 American Chemical Society.

Keywords

  • catalysis
  • dynamics
  • frequency
  • resonance
  • sabatier
  • volcano

Fingerprint Dive into the research topics of 'Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response'. Together they form a unique fingerprint.

Cite this