Abstract
How can we reverse-engineer the brain connectivity, given the input stimulus, and the corresponding brain-activity measurements, for several experiments? We show how to solve the problem in a principled way, modeling the brain as a linear dynamical system (LDS), and solving the resulting "system identification" problem after imposing sparsity and non-negativity constraints on the appropriate matrices. These are reasonable assumptions in some applications, including magnetoencephalography (MEG). There are three contributions: (a) Proof: We prove that this simple condition resolves the ambiguity of similarity transformation in the LDS identification problem; (b) Algorithm, : we propose an effective algorithm which further induces sparse connectivity in a principled way; and (c) Validation: our experiments on semi-synthetic (C. elegans), as well as real MEG data, show that our method recovers the neural connectivity, and it leads to interpretable results.
Original language | English (US) |
---|---|
Title of host publication | SIAM International Conference on Data Mining 2015, SDM 2015 |
Editors | Jieping Ye, Suresh Venkatasubramanian |
Publisher | Society for Industrial and Applied Mathematics Publications |
Pages | 631-639 |
Number of pages | 9 |
ISBN (Electronic) | 9781510811522 |
State | Published - 2015 |
Event | SIAM International Conference on Data Mining 2015, SDM 2015 - Vancouver, Canada Duration: Apr 30 2015 → May 2 2015 |
Publication series
Name | SIAM International Conference on Data Mining 2015, SDM 2015 |
---|
Other
Other | SIAM International Conference on Data Mining 2015, SDM 2015 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 4/30/15 → 5/2/15 |
Bibliographical note
Publisher Copyright:Copyright © SIAM.