Prescribed fire in oak savanna: Fire frequency effects on stand structure and dynamics

D. W. Peterson, P. B. Reich

Research output: Contribution to journalArticlepeer-review

287 Scopus citations

Abstract

Although it is well known that fire can exert strong control on stand structure, composition, and dynamics in savannas and woodlands, the relationship between fire frequency and stand structure has been characterized in few of the world's savanna and woodland ecosystems. To address this issue in temperate oak-dominated ecosystems, we studied the effects of fire frequency on stand structure and dynamics in oak savanna and woodland stands that had been burned 0-26 times in 32 yr, in the Anoka Sand Plain region of Minnesota (USA). Seedling densities declined with increasing fire frequency, but differentially, for northern pin oak (Quercus ellipsoidalis), black cherry (Prunus serotina), serviceberry (Amelanchier sp.), and red maple (Acer rubrum). Bur oak (Q. macrocarpa) seedling density was not sensitive to fire frequency. Frequent burning (at least three fires per decade) prevented development of a sapling layer and canopy ingrowth. Low-frequency burning (fewer than two fires per decade) produced stands with dense sapling thickets. Reductions in overstory density and basal area from 1984 to 1995 were observed for all stands burned two or more times during that period. Basal area declined by 4-7% per year, and density declined by 6-8% per year in stands burned four or more times. Mortality rates in burned stands were higher for northern pin oak (50%) than for bur oak (8%). Northern pin oak mortality was highest for small trees (< 20 cm dbh) and lowest for mature trees (30-40 cm dbh); mortality increased with fire frequency. Bur oak mortality declined with increasing fire frequency. Attempts to preserve and maintain savannas as a viable ecosystem type in this region will require a long-term commitment to restoration-based management, with prescribed fire as a central tool. Burn frequency treatments with four or more fires per decade produce similar reductions in stem density and stand basal area but may lead to unsustainable oak tree populations. Within this general range, fire frequencies at a decadal scale should be chosen to address other management objectives, including suppressing shrubs and promoting increased cover of grasses and other herbaceous species. Fire management with a long-term view may also require periodic respites to allow for new cohorts of mature oak trees.

Original languageEnglish (US)
Pages (from-to)914-927
Number of pages14
JournalEcological Applications
Volume11
Issue number3
DOIs
StatePublished - 2001

Keywords

  • Fire frequency
  • LTER
  • Oak savanna
  • Oak woodland
  • Prescribed burning
  • Quercus ellipsoidalis
  • Quercus macrocarpa
  • Restoration
  • Stand dynamics
  • Stand structure

Fingerprint Dive into the research topics of 'Prescribed fire in oak savanna: Fire frequency effects on stand structure and dynamics'. Together they form a unique fingerprint.

Cite this