Preparation, stability, and in vitro performance of vesicles made with diblock copolymers

C. M. Lee James, Harry Bermudez, Bohdana M. Discher, Maureen A. Sheehan, You Yeon Won, Frank S. Bates, Dennis E. Discher

Research output: Contribution to journalArticlepeer-review

332 Scopus citations

Abstract

Vesicles made completely from diblock copolymers - polymersomes - can be stably prepared by a wide range of techniques common to liposomes. Processes such as film rehydration, sonication, and extrusion can generate many-micron giants as well as monodisperse, ∼100 nm vesicles of PEO-PEE (polyethyleneoxide-polyethylethylene) or PEO-PBD (polyethyleneoxide-polybutadiene). These thick-walled vesicles of polymer can encapsulate macromolecules just as liposomes can but, unlike many pure liposome systems, these polymersomes exhibit no in-surface thermal transitions and a subpopulation even survive autoclaving. Suspension in blood plasma has no immediate ill-effect on vesicle stability, and neither adhesion nor stimulation of phagocytes are apparent when giant polymersomes are held in direct, protracted contact. Proliferating cells, in addition, are unaffected when cultured for an extended time with an excess of polymersomes. The effects are consistent with the steric stabilization that PEG-lipid can impart to liposomes, but the present single-component polymersomes are far more stable mechanically and are not limited by PEG-driven micellization. The results potentiate a broad new class of technologically useful, polymer-based vesicles.

Original languageEnglish (US)
Pages (from-to)135-145
Number of pages11
JournalBiotechnology and bioengineering
Volume73
Issue number2
DOIs
StatePublished - Apr 20 2001

Keywords

  • Diblock
  • Liposome
  • Membrane
  • Polymer
  • Vesicle

Fingerprint Dive into the research topics of 'Preparation, stability, and in vitro performance of vesicles made with diblock copolymers'. Together they form a unique fingerprint.

Cite this