TY - JOUR
T1 - Prediction of suicidal ideation and attempt in 9 and 10 year-old children using transdiagnostic risk features
AU - Harman, Gareth
AU - Kliamovich, Dakota
AU - Morales, Angelica M.
AU - Gilbert, Sydney
AU - Barch, Deanna M.
AU - Mooney, Michael A.
AU - Ewing, Sarah W.Feldstein
AU - Fair, Damien A.
AU - Nagel, Bonnie J.
N1 - Publisher Copyright:
© 2021 Harman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/5
Y1 - 2021/5
N2 - The objective of the current study was to build predictive models for suicidal ideation in a sample of children aged 9-10 using features previously implicated in risk among older adolescent and adult populations. This case-control analysis utilized baseline data from the Adolescent Brain and Cognitive Development (ABCD) Study, collected from 21 research sites across the United States (N = 11,369). Several regression and ensemble learning models were compared on their ability to classify individuals with suicidal ideation and/or attempt from healthy controls, as assessed by the Kiddie Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. When comparing control participants (mean age: 9.92±0.62 years; 4944 girls [49%]) to participants with suicidal ideation (mean age: 9.89±0.63 years; 451 girls [40%]), both logistic regression with feature selection and elastic net without feature selection predicted suicidal ideation with an AUC of 0.70 (CI 95%: 0.70-0.71). The random forest with feature selection trained to predict suicidal ideation predicted a holdout set of children with a history of suicidal ideation and attempt (mean age: 9.96±0.62 years; 79 girls [41%]) from controls with an AUC of 0.77 (CI 95%: 0.76-0.77). Important features from these models included feelings of loneliness and worthlessness, impulsivity, prodromal psychosis symptoms, and behavioral problems. This investigation provided an unprecedented opportunity to identify suicide risk in youth.
AB - The objective of the current study was to build predictive models for suicidal ideation in a sample of children aged 9-10 using features previously implicated in risk among older adolescent and adult populations. This case-control analysis utilized baseline data from the Adolescent Brain and Cognitive Development (ABCD) Study, collected from 21 research sites across the United States (N = 11,369). Several regression and ensemble learning models were compared on their ability to classify individuals with suicidal ideation and/or attempt from healthy controls, as assessed by the Kiddie Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. When comparing control participants (mean age: 9.92±0.62 years; 4944 girls [49%]) to participants with suicidal ideation (mean age: 9.89±0.63 years; 451 girls [40%]), both logistic regression with feature selection and elastic net without feature selection predicted suicidal ideation with an AUC of 0.70 (CI 95%: 0.70-0.71). The random forest with feature selection trained to predict suicidal ideation predicted a holdout set of children with a history of suicidal ideation and attempt (mean age: 9.96±0.62 years; 79 girls [41%]) from controls with an AUC of 0.77 (CI 95%: 0.76-0.77). Important features from these models included feelings of loneliness and worthlessness, impulsivity, prodromal psychosis symptoms, and behavioral problems. This investigation provided an unprecedented opportunity to identify suicide risk in youth.
UR - http://www.scopus.com/inward/record.url?scp=85106639395&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106639395&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0252114
DO - 10.1371/journal.pone.0252114
M3 - Article
C2 - 34033672
AN - SCOPUS:85106639395
SN - 1932-6203
VL - 16
JO - PloS one
JF - PloS one
IS - 5 May
M1 - e0252114
ER -