Predicting properties of molecules using graph invariants

Subhash C. Basak, Gerald J. Niemi, Gilman D. Veith

Research output: Contribution to journalArticlepeer-review

100 Scopus citations


Topological indices (TIs) have been used to study structure-activity relationships (SAR) with respect to the physical, chemical, and biological properties of congeneric sets of molecules. Since there are many TIs and many are correlated, it is important that we identify redundancies and extract useful information from TIs into a smaller number of parameters. Moreover, it is important to determine if TIs, or parameters derived from TIs, can be used for global SAR models of diverse sets of chemicals. We calculated seventy-one TIs for three groups of molecules of increasing complexity and diversity: (a) 74 alkanes, (b) 29 alkylbenzenes, and (c) 37 polycyclic aromatic hydrocarbons (PAHs). Principal components analysis (PCA) revealed that a few principal components (PCs) could extract most of the information encoded by the seventy-one TIs. The structural basis of the first few PCs could be derived from their pattern of correlation with individual TIs. For the three sets of molecules, viz. alkanes, alkylbenzenes and PAHs, PCs were able to predict the boiling points reasonably well. Also, for the combined set of 140 chemicals consisting of the alkanes, alkylbenzenes and PAHs, the derived PCs were not as effective in predicting properties as in the case of individual classes of compounds.

Original languageEnglish (US)
Pages (from-to)243-272
Number of pages30
JournalJournal of Mathematical Chemistry
Issue number1
StatePublished - Dec 1991
Externally publishedYes


Dive into the research topics of 'Predicting properties of molecules using graph invariants'. Together they form a unique fingerprint.

Cite this