Predicting performance from functional imaging data: Methods matter

John J. Sidtis, Stephen C. Strother, David A. Rottenberg

Research output: Contribution to journalComment/debatepeer-review

45 Scopus citations

Abstract

In the standard approach to functional imaging studies, brain-behavior relationships are studied by contrasting data obtained during different behavioral states. It is generally assumed that relative change yields meaningful data about relevant brain processes, and that the magnitude of the change reflects the extent of a region's involvement in the behavior being studied. The present study takes a different approach by asking the question, Can functional imaging data predict performance? Regional cerebral blood flow was measured using positron emission tomography in a group of 13 right-handed, normal volunteers during speech production and quiet baseline. A number of methodological assumptions were addressed by examining the relationships between different imaging measures derived from the same raw data and performance on the speech task. The results demonstrate that several common assumptions are not necessarily true. First, although measures based on "activated" scans alone had predictive value with respect to speech rate, measures based on contrasts between "baseline" and "activated" states did not. This was true regardless of whether the contrast was based on subtraction or covariance analyses. Second, while many regions demonstrated large signal increases during speech, speech rate could be predicted by a linear combination of data from two regions, neither of which had the highest "activation" peak, and one of which had a negative relationship with performance. The results demonstrate that contrasting experimental conditions do not necessarily isolate or enhance brain activity related to performance, and that the current assumptions about activation in functional imaging need to be reconsidered.

Original languageEnglish (US)
Pages (from-to)615-624
Number of pages10
JournalNeuroImage
Volume20
Issue number2
DOIs
StatePublished - Oct 1 2003
Externally publishedYes

Bibliographical note

Funding Information:
Part of this work was originally presented at the 4th International Conference on Functional Mapping of the Human Brain, June 1998. Support was provided by the Bob Allison Ataxia Research Center, by the Program in Hereditary Ataxia (PO1NS33718), and by the Human Brain Project Program in Visualization of Functional Connectivity in the Brain (P20 MH57180). The helpful comments of the reviewers, of Drs. Diana Sidtis, and Costantino ladecola on earlier versions of this manuscript, and of Dr. Babak Ardekani on normalization in fMRI are gratefully acknowledged. The assistance of J. Anderson, D. Daly, M. Kneer, C. Farmer, D. Hamm, C. Erickson, and J. Mahowald in scanning, data collection, and processing are also gratefully appreciated.

Fingerprint

Dive into the research topics of 'Predicting performance from functional imaging data: Methods matter'. Together they form a unique fingerprint.

Cite this