Predicting learning dynamics in Multiple-Choice Decision-Making Tasks using a variational Bayes technique

Ali Yousefi, Reza Kakooee, Mohammad Th Beheshti, Darin D. Dougherty, Emad N. Eskandar, Alik S. Widge, Uri T. Eden

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Multiple-Choice Decision-Making Tasks are widely used to analyze behavior and infer underlying cognitive states that shape the decision and learning processes. The behavioral signals recorded in these tasks are dynamic and often non-Gaussian -for instance, when learning a multiple choice association task. Previously developed estimation algorithms for latent behavioral variables do not address multiple-choice responses. In this research, we use a state-space modeling framework to predict a cognitive learning state related to multiple choice decisions, which are best described by a multinomial distribution. The proposed algorithm combines a multinomial filter/smoother and a variational Bayes technique to estimate the dynamics of a learning state vector. The algorithm is applied to decision response data recorded from non-human primates (NHPs) performing a Multiple-Choice Decision Task.

Original languageEnglish (US)
Title of host publication2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3194-3197
Number of pages4
ISBN (Electronic)9781509028092
DOIs
StatePublished - Sep 13 2017
Externally publishedYes
Event39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of
Duration: Jul 11 2017Jul 15 2017

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
Country/TerritoryKorea, Republic of
CityJeju Island
Period7/11/177/15/17

Bibliographical note

Funding Information:
*This research was funded [in part] by the Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement Number W911NF-14-2-0045,issued bytheArmyResearch Officecontracting office in support of DARPA'S SUBNETS program. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.  AY, and UTE are with the Department of Mathematics and Statistics of Boston University, Boston, MA  AY, DDD, ENS, and ASW are with Harvard Medical School and Massachusetts General Hospital, Boston, MA  RK, and MTHB are with the Department of Electrical and Computer Engineering, Tarbiat ModaresUniversity, Tehran, Iran AY andRKcontributedequallyto this research. UTE and ASW are the co-senior authors and contributed equally to the manuscript.  Address for reprint requests and other correspondence: Ali Yousefi, Email: ayousefi@mgh.harvard.edu

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of 'Predicting learning dynamics in Multiple-Choice Decision-Making Tasks using a variational Bayes technique'. Together they form a unique fingerprint.

Cite this