Predicted performance of a ceramic foam gas phase heat recuperator for a solar thermochemical reactor

Rohini Bala Chandran, Aayan Banerjee, Jane H Davidson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The efficiency of solar thermochemical cycles to split water and carbon dioxide depends in large part on highly effective gas phase heat recovery. Heat recovery is imperative for approaches that rely on an inert sweep gas to reach low partial pressures of oxygen during thermal reduction and/or use excess oxidizer to provide a higher thermodynamic driving potential for fuel production. In this paper, we analyze heat transfer and pressure drop of a tube-in-tube ceramic heat exchanger for the operating conditions expected in a prototype solar reactor for isothermal cycling of ceria. The ceramic tubes are filled with reticulated porous ceramic (RPC). The impacts of the selection of the composition and morphology of the RPC on heat transfer and pressure drop are explored via computational analysis. Results indicate a 10 pore per inch (ppi), 80-85% porous alumina RPC yields effectiveness from 85 to 90 percent.

Original languageEnglish (US)
Title of host publicationASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791845868
DOIs
StatePublished - 2014
EventASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology - Boston, United States
Duration: Jun 30 2014Jul 2 2014

Publication series

NameASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
Volume1

Other

OtherASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
Country/TerritoryUnited States
CityBoston
Period6/30/147/2/14

Bibliographical note

Publisher Copyright:
Copyright © 2014 by ASME.

Fingerprint

Dive into the research topics of 'Predicted performance of a ceramic foam gas phase heat recuperator for a solar thermochemical reactor'. Together they form a unique fingerprint.

Cite this