Precovery of Transiting Exoplanet Survey Satellite Single Transits with Kilodegree Extremely Little Telescope

Xinyu Yao, Joshua Pepper, B. Scott Gaudi, Jonathan Labadie-Bartz, Thomas G. Beatty, Knicole D. Colón, David J. James, Rudolf B. Kuhn, Michael B. Lund, Joseph E. Rodriguez, Robert J. Siverd, Keivan G. Stassun, Daniel J. Stevens, Steven Villanueva, Daniel Bayliss

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

During the Transiting Exoplanet Survey Satellite (TESS) prime mission, 74% of the sky area will have an observational baseline of only 27 days. For planets with orbital periods longer than 13.5 days, TESS can capture only one or two transits, and the planet ephemerides will be difficult to determine from TESS data alone. Follow-up observations of transits of these candidates will require precise ephemerides. We explore the use of existing ground-based wide-field photometric surveys to constrain the ephemerides of the TESS single-transit candidates, with a focus on the Kilodegree Extremely Little Telescope (KELT) survey. We insert simulated TESS-detected single transits into KELT light curves and evaluate how well their orbital periods can be recovered. We find that KELT photometry can be used to confirm ephemerides with high accuracy for planets of Saturn size or larger, with orbital periods as long as a year, and therefore span a wide range of planet equilibrium temperatures. In a large fraction of the sky, we recover 30%-50% of warm Jupiter systems (planet radius of 0.9-1.1 R J and 13.5 < P < 50 days), 5%-20% of temperate Jupiters (50 < P < 300 days), and 10%-30% of warm Saturns (planet radius of 0.5-0.9 R J and 13.5 < P < 50 days). The resulting ephemerides can be used for follow-up observations to confirm candidates as planets, eclipsing binaries, or other false positives, as well as to conduct detailed transit observations with facilities like James Webb Space Telescope or Hubble Space Telescope.

Original languageEnglish (US)
Article number37
JournalAstronomical Journal
Volume157
Issue number1
DOIs
StatePublished - Jan 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019. The American Astronomical Society. All rights reserved.

Keywords

  • methods: data analysis
  • planets and satellites: detection
  • planets and satellites: general
  • techniques: photometric

Fingerprint

Dive into the research topics of 'Precovery of Transiting Exoplanet Survey Satellite Single Transits with Kilodegree Extremely Little Telescope'. Together they form a unique fingerprint.

Cite this